Brouillon

Classification et régionalisation

Application aux résultats des élections européennes de 2024 en France métropolitaine

Creative Commons BY License ISSN 2743-8791 - Rzine.fr - Revue de méthodes pour les SHS

Auteur·rice
Affiliation
Claude Grasland
Date de publication

20 août 2025

Doi
Keywords

Classification, régionnalisation


Résumé

La combinaison des méthodes de classification et de régionalisation est facilitée par le développement d’une nouvelle fonction du package adespatial qui permet de regrouper les unités spatiales les plus ressemblantes en respectant la contrainte de connexité. Mise au point par des écologues canadien, cette méthode de classification ascendante hiérarchique avec contrainte de voisinage est beaucoup plus simple d’emploi et beaucoup plus efficace que les autres méthodes de régionalisation disponible actuellement dans des packages tels que Rgeoda. Elle s’appuie sur un corpus théorique d’analyse spatiale de la biodiversité des espaces animales ou végétales que l’on peut tenter de transposer à de nombreux problèmes géographiques. Mais en adoptant une posture critique dans le cas de thématiques éloignées des questions de biologie végétale. Nous prenons ici comme exemple l’analyse du résultat des élections européennes de 2024 en France métropolitaine à trois niveaux d’agrégation : régions adminisratives , départements et circonscriptions législatives. Nous comparons à chaque échelle les résultats des méthodes de régionalisation et classification et nous discutons leurs apports respectifs pour la compréhension des phénomènes de géographie électorale.

Introduction

Classification et régionalisation

Les géographes français qui sont confrontés à l’analyse d’un ensemble de variables décrivant un ensemble de lieux vont le plus souvent procéder à une analyse en deux étapes combinant analyse factorielle et classification ascendante hiérarchique (CAH). Si les variables sont hétérogènes (différentes unités de mesure) ils utiliseront une analyse en composantes principales sur le tableau des variables standardisées suivi d’une CAH en métrique euclidienne. Si les variables forment un tableau de contingence, ils pourront appliquer les méthode précédentes sur un tableau de profils en ligne (standardisés ou non) ou bien opter pour le couplage entre analyse factorielle des correspondances et classification ascendante hiérarchique en métrique du chi-2. Ces approches qui s’inscrivent dans la tradition de l’analyse des données “à la française” ont été formalisées initialement par les travaux de Benzecri (1973), puis popularisés en géographie par l’ouvrage de Sanders (1989) et finalement mis à la disposition d’un large public grâce à l’excellent package FactomineR (Lê et al., 2008) et les publications de ses auteurs, notamment Husson et al. (2016). Les avantages du couplage entre les deux approches sont évidents puisque les méthodes factorielles permettent d’analyser d’abord les corrélations entre les colonnes du tableau avant de procéder au regroupement des lignes à l’aide de la CAH (Husson et al., 2010).

Sans remettre en cause l’intérêt de ces approches, nous souhaiterions proposer ici une autre forme de couplage de méthodes statistiques associant classification et régionalisation, issue des travaux des écologues qui s’intéressent aux associations spatiales de plantes ou d’animaux et cherchent à en mesurer l’abondance, la spécialisation et la diffusion Legendre et De Cáceres (2013). Si le point de départ est le même (tableau croisant des lieux décrits par un ensemble de variables), les analyses vont ici surtout porter sur des tableaux homogènes décrivant soit l’abondance de différentes espèces (tableau de contingence), soit leur présence/absence (tableau disjonctif complet). Et surtout elles vont ajouter un élément supplémentaire sous la forme d’une matrice de voisinage décrivant généralement - mais pas toujours - les relations entre lieux sous la forme d’un graphe de contiguïté de type planaire.

Figure 1: Différentes formes de graphe de voisinage (source : R-Spatial)

De nombreuses méthodes d’analyse spatiale et d’économétrie tentent de mesurer l’influence exercée ou subie par unité spatiale vis-à-vis des unités proches Anselin (2022). Dans le cas des unités de type aréal, la solution la plus simple est la présence d’une frontière commune (adjacency) qui aboutit à un graphe de type planaire. Mais bien d’autres solutions sont possibles comme l’illustre l’exemple du Luxembourg décrit dans le document en ligne R-spatial

La procédure de régionalisation mise au point récemment avec la fonction constr.hclust()du package adespatial suit le schéma suivant (Figure 2) :

Figure 2: Algorithme de régionalisation (Guénard & Legendre, 2022 )

Il s’agit donc d’une méthode de classification ascendante hiérarchique comparable à celles réalisables en langage R-Base avecla fonction hclust() ou dans le package FactoMineR avec la fonction HCPC(), mais avec deux différences importantes. D’une part, l’ajout de la contrainte de voisinage limite les possibilités de fusion des unités spatiales, ce qui réduit beaucoup le temps de calcul. D’autre part, il est possible d’utiliser un grand nombre de fonctions de dissimilarités en entrée, sans se limiter à celles qui sont privilégiées par les méthodes d’analyse factorielle à la française. Les écologues considèrent en effet que la distance euclidienne (normée ou non) et la distance du chi-2 ne sont pas toujours les plus pertinentes pour mesurer les ressemblances entre lieux, surtout si l’on considère le caractère généralement non gaussien des distributions statistiques des variables associées.

Un exemple pédagogique en géographie quantitative …

L’objectif du présent article est de discuter l’intérêt de cette procédure pour l’analyse géographique de tableaux de contingence dont les lignes sont des lieux et les colonnes des attributs dont la somme en ligne a un sens. Nous avons retenu comme exemple d’application l’exploration de la distribution spatiale des votes aux élections européennes de 2024 en France métropolitaine (hors Corse). Nous examinons les résultats des 38 listes de candidats à trois niveaux d’agrégation : les 12 régions, les 94 départements et les 535 circonscriptions législatives (cf. partie suivante).

Pour éviter une répétition, chaque niveau d’analyse sera dédié à un aspect différent du problème général de comparaison des approches de régionalisation et de classification et d’analyse de leurs apports à la géographie électorale.

  • L’échelle régionale sera utilisée pour rappeler les principes de base des méthodes de classification et de régionalisation en insistant sur le rôle déterminant du choix de la matrice de dissimilarité utilisée en entrée. On se limitera ici à la comparaison des résultats des listes conduites par Jordan Bardella et Marion Maréchal.

  • L’échelle départementale constituera le niveau privilégié de comparaison des résultats des méthodes de classification et de régionalisation afin de voir leurs apports respectifs à la compréhension du phénomène. L’analyse porte sur l’ensemble des listes et vise à mettre à jour de grandes régions homogènes sur le plan électoral comme la France de l’Ouest chère à Siegfried (1913) et Goguel (1953,2012).

  • L’échelle des circonscriptions permettra d’examiner l’intérêt d’une approche multiscalaire et de souligner les difficultés de la régionalisation lorsque le niveau d’agrégation dissocie les entités urbaines, périurbaines et rurale. Peut-on produire une régionalisation pertinente face à une distribution spatiale des résultats électoraux en forme de “peau de léopard” ?

L’exemple des données électorales avait été initialement choisi pour des raisons pédagogiques (agrégation à différentes échelles, nombre élevé de listes, intérêt des lecteurs pour un sujet d’actualité, …). Il est en effet très classique pour les enseignants de géographie dite “quantitative” d’illustrer les cours d’analyse des donnés par des tableaux de résultats électoraux par départements, régions ou arrondissements de Paris, en utilisant successivement une analyse factorielle et une classification ascendante hiérarchique. Dans une publication pédagogique de la revue Feuilles de Géographie intitulée “1995 : les élections présidentielles et la fracture sociale où les jubilations des géographes quantitativistes(Baron et Karine, 1995), les auteures présentent les apports respectifs de l’analyse factorielle et de la classification et justifient ainsi le choix de l’exemple retenu :

“Car depuis A. Siegfried, Les Brouillons Dupont et Theo Quant, quand un géographe”quantitativiste” rencontre Le Monde daté du surlendemain du scrutin, c’est tout de suite le coup de foudre: et que je t’achète, et que je te feuillette frenétiquement, et que je m’extasie devant tel score et que je pleure devant tel autre, et que je saisis le tableau de données et que je sors les analyses,… et - oh suprême récompense - que je cartographie les plus “beaux” résultats. A chaque nouveau scrutin c’est un éternel recommencement ! Alors, vous pensez : quand, par bonheur, les élections présidentielles surviennent avant la session d’examen de Juin, c’est l’EU - PHO - RIE ! Imaginez 96 départements et 9 candidats : toutes ces combinaisons ! Vertigineux, non ?”

Figure 3: 1995 : les élections présidentielles et la fracture sociale où les jubilations des géographes quantitativistes (Baron & Emsellem, 1995 )

… mais faisant débat en géographie électorale et géographie sociale

Avec le renouveau de la géographie politique en France Rivière (2009) et le développement de liens plus étroits entre géographes et politistes Gombin et Rivière (2014), il n’est toutefois plus possible d’analyser la distribution spatiale des données électorales sans introduire une dimension plus théorique sur la signification des résultats observés. Et en tous les cas il peut sembler choquant de transposer une méthode issue de la biologie aux phénomènes humains sans s’être au préalable assurer de la pertinence du transfert. Ce que souligne à juste titre l’un des rapporteurs de la première version de cet article :

“L’introduction évoque des techniques « issues des travaux des écologues qui s’intéressent aux associations spatiales de plantes ou d’animaux et cherchent à en mesurer l’abondance, la spécialisation et la diffusion », et le résumé de l’article précise qu’une des technique de classification/régionalisation présentée dans l’article « s’appuie sur un corpus théorique d’analyse spatiale de la biodiversité des espaces animales ou végétales que l’on peut transposer à de nombreux problèmes géographiques », mais on aimerait en savoir un peu plus sur ce corpus théorique, et sur les « problèmes géographiques » que l’on peut traiter ainsi. En effet et au plan épistémologique, la question de la diffusion telle que traitée en biogéographie et celle des effets de contexte sur la formation des opinions en géographie électorale (pour reprendre le champ thématique de l’article) peuvent difficilement être abordées de la même manière, au risque d’une tendance à la naturalisation des dynamiques sociales. Est-ce à dire, comme le considère le démographe H. Le Bras (Le Bras, 2002), que les opinions se transmette de proche en proche à la manière de lois de l’épidémiologie ? Si c’est l’idée que souhaite défendre l’auteur (ce qui est tout à fait possible, il existe une littérature de sociologie anglophone sur les « conversion par la conversation ») et dans l’esprit des précautions de Bourdieu & Passeron « la fausse neutralité des techniques » (Bourdieu et al., 2005), alors il faut aller plus loin dans l’explicitation des implications théoriques des deux techniques discutées (Jean Rivière, Mai 2025)”

Le choix d’une méthode de classification ou de régionalisation pour étudier la répartition des comportements électoraux n’est donc pas neutre car il conditionne l’interprétation même des résultats en termes de processus de formation des opinions. La classification ne fait en effet pas d’hypothèse a priori sur les déterminants contextuels du vote. Alors que la régionalisation postule implicitement l’existence d’une autocorrélation spatiale (similarité des unités de proche en proche, liée par exemple à la diffusion d’une innovation) ou d’une autocorrélation territoriale (similarité des unités liées à leur appartenance à une même maille territoriale et produisant des discontinuités le long des frontières).

On retrouve en fait ici les termes de la controverse qui opposa G. Tarde et E. Durkheim et que ce dernier discute dans le chapitre 4 du Suicide (Durkheim, 1897). C’est à l’aide de la fameuse carte du taux de suicide par arrondissements que Durkheim réfute l’hypothèse diffusioniste dans un texte à bien des égards fondateur pour l’analyse spatiale des phénomènes sociaux (Grasland, 2010):

“En définitive, ce que nous montrent toutes les cartes, c’est que le suicide, loin de se disposer plus ou moins concentriquement autour de certains loyers à partir desquels il irait en se dégradant progressivement, se présente, au contraire, par grandes masses à peu près homogènes (mais à peu près seulement) et dépourvues de tout noyau central. Une telle configuration n’a donc rien qui décèle l’influence de l’imitation […]” “Il n’y a ici ni imitateurs ni imités, mais identité relative dans les effets due à une identité relative dans les causes. Et on s’explique, aisément qu’il en soit ainsi si, comme tout ce qui précède le fait déjà prévu, le suicide dépend essentiellement de certains états du milieu social. Car ce dernier garde généralement la même constitution sur d’assez larges étendues de territoire. Il est donc naturel que, partout où il est le même, il ait les mêmes conséquences sans que la contagion y soit pour rien. C’est pourquoi il arrive le plus souvent que, dans une même région, le taux des suicides se soutienne à peu près au même niveau. […]” Ce qui prouve que cette explication est fondée, c’est qu’on le voit se modifier brusquement du tout au tout chaque fois que le milieu social change brusquement. Jamais celui-ci n’étend son action au-delà de ses limites naturelles. Jamais un pays que des conditions particulières prédisposent spécialement au suicide n’impose, par le seul prestige de l’exemple, son penchant aux pays voisins, si ces mêmes conditions ou d’autres semblables ne s’y trouvent pas au même degré. ”

Figure 4: Suicides en France par arondissement 1887-1991 (Durkheim E., 1897, Le Suicide, Chap. IV)

Emile Durkheim ne disposait évidemment pas de l’apport des modèles multi-niveaux ou des techniques de régression géographiquement pondérée qui permettent de séparer les déterminants individuels et contextuels du suicide. Mais il montre très tôt une sensibilité aux échelles d’agrégation (justification des arrondissements plutôt que des départements qui masqueraient les effets urbains). Il postule très clairement l’existence de “régions” caractérisées par un même “milieu social” jouant le rôle de déterminants dont l’action est bornée par des “limites naturelles” et peut être vu comme un précurseur de Siegfried (1913). Tarde, au contraire, annonce les travaux de Hagerstrand (1968) sur la diffusion spatiale des innovations et serait un lointain ancêtre des théories du gradient d’urbanité de Lévy (2013).

Même si ce n’était pas l’objectif initial de cet article, nous aurons donc le souci tout au long de l’analyse de l’exemple des résultats électoraux aux différentes échelles de comparer les résultats des méthodes de classification et de régionalisation en gardant en tête le fait qu’elles reposent sur des hypothèses interprétatives fondamentalement différentes.

Données utilisées

Pour faciliter la démonstration, les données brutes utilisées (résultats des élections européennes de 2024, fonds de carte et table de correspondance) ont été simplifiées (cf. Annexes). La mise en pratique présentée est réalisée à partir des données suivantes :

A. Résultats des élections européennes de 2024

don_reg <- readRDS("data/net/don_regi.RDS") 
don_dep <- readRDS("data/net/don_dept.RDS") 
don_cir <- readRDS("data/net/don_circ.RDS") 
listes <- readRDS("data/net/don_listes.RDS")


B. Fonds de carte des régions, départements et circonscriptions

map_regi <- readRDS("data/net/map_regi.RDS")
map_dept <- readRDS("data/net/map_dept.RDS")
map_circ <- readRDS("data/net/map_circ.RDS")

Packages nécessaires

Les packages nécessaires pour réaliser la chaîne de traitement présentée sont les suivants :

  • dplyr pour la manipulation de données
  • ggplot2 pour la construction de graphique
  • ggrepel pour la gestion des labels dans les graphiques ggplot2
  • sf pour la manipulation de données géographiques vectorielles
  • mapsf pour la construction de carte thématique
  • ineq pour le calcul de l’indice de Gini
  • spdep pour le calcul de matrices spatiales
  • adespatial pour réaliser des classifications à contrainte spatiale
  • cartogramR pour construire des cartogramme (anamorphose)

Chargement des librairies :

# Packages utilitaires
library(dplyr)

# Graphiques
library(ggplot2)
library(ggrepel)

# Manipulation données géographiques
library(sf)

# Cartographie
library(mapsf)
library(cartogramR)

# Statistique 
library(ineq)
library(spdep)
library(adespatial)

1 Échelle régionale : principes de base

Afin de bien comprendre la différence entre classification et régionalisation et l’importance de la pondération, nous allons commencer par un exemple très simple portant sur la distribution des votes pour les deux principales listes d’extrême droite dans les 12 régions de France Métropolitaine.

don_reg <- readRDS("data/net/don_regi.RDS") 

On calcule le pourcentage de suffrages exprimés pour les listes conduites par Jordan Bardella (liste n°5 , RN) et Marion Maréchal (liste n°3, Reconquête) à l’échelle des 12 régions de France Métropolitaine (hors Corse).

code_reg <- c("IDF", "CVDL", "BOFC", "NORM", "HDFR", "GEST",
              "PDLO", "BRET", "NAQU", "OCCI","AURA", "PACA")

don <- don_reg  |>
        mutate(Bardella = 100 * vot5 / exp, 
               Marechal = 100 * vot3 / exp,
               regi_code = code_reg)  |>
        select(regi, regi_code, regi_nom, Bardella, Marechal) |>
        arrange(regi)

On obtient le tableau suivant :

regi regi_code regi_nom Bardella Marechal
11 IDF Île-de-France 18.8 5.7
24 CVDL Centre-Val de Loire 34.9 5.4
27 BOFC Bourgogne-Franche-Comté 37.1 5.3
28 NORM Normandie 35.3 4.6
32 HDFR Hauts-de-France 42.4 4.6
44 GEST Grand Est 38.3 5.5
52 PDLO Pays de la Loire 27.6 4.7
53 BRET Bretagne 25.6 4.2
75 NAQU Nouvelle-Aquitaine 30.9 5.0
76 OCCI Occitanie 33.7 5.5
84 AURA Auvergne-Rhône-Alpes 30.9 5.6
93 PACA Provence-Alpes-Côte d’Azur 38.6 7.7
Part des suffrages exprimés pour les listes Bardella et Marechal aux élections européennes de 2024 par région

1.1 Exploration des variables

1.1.1 Paramètres principaux

L’examen des paramètres statistiques des deux listes est effectué à l’intérieur des 12 régions étudiées en excluant la Corse et les DROM. Les valeurs sont donc légèrement différentes des résultats obtenus pour la France entière.

# Valeurs min
min <- apply(don[, 4:5], 2, min)

# Valeurs max
max <- apply(don[, 4:5], 2, max)

# Moyennes
moy <- apply(don[, 4:5], 2, mean)

# Écarts typess
ect <- apply(don[, 4:5], 2, sd)

# Variance
var <- ect^2

# coeff. variation (%)
cv <- 100 * ect / moy

# Tableau des paramètres calculés
tab <- cbind(min, max, moy, ect, var, cv)
row.names(tab) <- c("Bardella", "Marechal")

# Paramètres principaux des deux listes
print(round(tab,1))
          min  max  moy ect  var   cv
Bardella 18.8 42.4 32.9 6.5 42.7 19.9
Marechal  4.2  7.7  5.3 0.9  0.8 16.7

1.1.2 Distribution spatiale

On cartographie la distribution des deux variables en quatre classes à l’aide de la méthode des quantiles (trois régions par classe) et on examine la forme des histogrammes correspondant.

mf_theme(cex = 1.5, line = 1.5, mar =  c(1, 1, 1.5, 1))
# Chargement du fond de carte
map <- readRDS("data/net/map_regi.RDS")

# Jointure fiond de carte et donées
mapdon <- left_join(map, don)


# Carte Bardella
mf_map(mapdon,
       type = "choro",
       var = "Bardella",
       nbreaks = 4,
       method = "quantile",
       leg_title = "en %",
       leg_val_rnd = 1, 
       leg_title_cex = 1.5, 
       leg_val_cex = 1.2,
       leg_size = 1.5)

mf_layout("Vote Bardella", frame = TRUE, credits = "", arrow = FALSE)
# ---

# Carte Maréchal
mf_map(mapdon,
       type = "choro",
       var = "Marechal",
       nbreaks = 4,
       method = "quantile",
       leg_title = "en %",
       leg_val_rnd = 1,  
       leg_title_cex = 1.5, 
       leg_val_cex = 1.2,
       leg_size = 1.5)

mf_layout("Vote Marechal", frame = TRUE, credits = "", arrow = FALSE)
# ---


# Distribution Bardella
mf_distr(don$Bardella, nbins = 4, bw = sd(don$Bardella))
# ---

# Distribution Maréchal
mf_distr(don$Marechal, nbins = 4, bw = sd(don$Marechal))

1.2 Matrices de dissimilarité

En amont d’une classification ou d’une régionalisation, la création d’une matrice de dissimilarité entre les unités spatiales est une étape essentielle qui conditionne la suite des analyses. Deux choix essentiels interviennent alors :

  • le choix d’une transformation ou non des indicateurs
  • le choix d’une métrique

1.2.1 Espace des variables brutes

La variance des scores de la variable X1 (Bardella) est beaucoup plus forte que celle de la variable X2 (Maréchal), ce qui signifie que si l’on s’en tient aux variables brutes, les différences entre régions seront liées essentiellement aux variations de la liste X1. Les différentes unités spatiales se positionneront alors dans un espace de la forme suivante :

plot(x = don$Bardella,
     y = don$Marechal,
     asp = 1,
     xlab = "Score Bardella en % (X1)",
     ylab = "Score Marechal en % (X2)",
     main = "Distances dans l'espace des variables brutes",
     pch = 20)

text(x = don$Bardella, y = don$Marechal, labels = don$regi_code,
     pos = 3, cex = 0.8, col = "red")

grid()

On voit visuellement sur la figure précédente que les points représentant les unités spatiales sont plus ou moins éloignés, la distance qui les sépare étant une mesure de leur dissimilarité en matière de vote pour les deux listes considérées. Deux mesures de distances peuvent alors classiquement être utilisées pour convertir les positions en matrice de distance :

  • la distance euclidienne : \(D^{Euc}(i,j) = \sqrt{\sum_{k=1}^K (X_{ik}-X_{jk})^2}\)
  • la distance de Manhattan : \(D^{Man}(i,j) = \sum_{k=1}^K |X_{ik}-X_{jk}|\)

Les deux solutions donnant des résultats assez voisins, on se limitera ici à l’analyse de la matrice des distances euclidiennes.

DS_eucl <- as.matrix(dist(don[, 4:5], 
                          method = "euclidean", 
                          upper = TRUE, 
                          diag = FALSE))

colnames(DS_eucl) <- don$regi_code
rownames(DS_eucl) <- don$regi_code

Matrice des distances euclidiennes :

Dissimilarité en distance euclidienne brute
IDF CVDL BOFC NORM HDFR GEST PDLO BRET NAQU OCCI AURA PACA
IDF 0.0 16.2 18.3 16.6 23.6 19.5 8.9 6.9 12.2 14.9 12.1 20.0
CVDL 16.2 0.0 2.2 0.9 7.5 3.4 7.3 9.4 4.0 1.3 4.0 4.4
BOFC 18.3 2.2 0.0 1.9 5.4 1.3 9.5 11.6 6.2 3.4 6.2 2.9
NORM 16.6 0.9 1.9 0.0 7.1 3.1 7.7 9.8 4.4 1.9 4.5 4.5
HDFR 23.6 7.5 5.4 7.1 0.0 4.2 14.8 16.8 11.5 8.8 11.5 4.9
GEST 19.5 3.4 1.3 3.1 4.2 0.0 10.7 12.8 7.4 4.6 7.4 2.2
PDLO 8.9 7.3 9.5 7.7 14.8 10.7 0.0 2.1 3.3 6.1 3.4 11.4
BRET 6.9 9.4 11.6 9.8 16.8 12.8 2.1 0.0 5.4 8.2 5.5 13.5
NAQU 12.2 4.0 6.2 4.4 11.5 7.4 3.3 5.4 0.0 2.8 0.6 8.2
OCCI 14.9 1.3 3.4 1.9 8.8 4.6 6.1 8.2 2.8 0.0 2.8 5.4
AURA 12.1 4.0 6.2 4.5 11.5 7.4 3.4 5.5 0.6 2.8 0.0 8.0
PACA 20.0 4.4 2.9 4.5 4.9 2.2 11.4 13.5 8.2 5.4 8.0 0.0

1.2.2 Espace des variables standardisées

Si le choix de la métrique euclidienne ou de la métrique de Manhattan introduit peu de différences dans les matrices de dissimilarité, il en va tout autrement de la standardisation des variables qui consiste à ramener chaque indicateur à une même moyenne (\(\mu = 0\)) et surtout un même écart-type (\(\sigma = 1\)).

\[X^*_i = \frac{X_i - \mu_X}{\sigma_X}\]

Pour bien apprécier la différence, on peut commencer par visualiser les distances (donc les dissimilarités) dans l’espace des variables standardisées en adoptant comme précédemment un repère orthonormé mais dont l’unité de mesure est l’écart-type et non plus les points de pourcentage :

# Standardisation des deux variables
don$Bardella_std <- as.double(scale(don$Bardella))
don$Marechal_std <- as.double(scale(don$Marechal))

# Représentation graphique
plot(x = don$Bardella_std,
     y = don$Marechal_std, 
     asp = 1,
     xlim = c(-2.5, 2.5),
     ylim = c(-1.5, 3),
     xlab = "Score Bardella standardisé (X1)",
     ylab = "Score Marechal standardisé (X2)",
     main = "Distances dans l'espace des variables standardisées",
     pch = 20)

text(x = don$Bardella_std, y = don$Marechal_std, 
     labels = don$regi_code, pos = 2, cex = 0.8, col = "red")

grid()

Les distances euclidiennes dans ce nouvel espace des variables standardisées sont évidemment différentes de celles que l’on avait obtenu dans l’espace des variables brutes.

DS_eucl_std <- as.matrix(dist(don[, 6:7],
                         method = "euclidean", 
                         upper = TRUE, 
                         diag = FALSE))

colnames(DS_eucl_std) <- don$regi_code
rownames(DS_eucl_std) <- don$regi_code

Matrice des distances euclidiennes standardisées :

Dissimilarité en distance euclidienne standardisée
IDF CVDL BOFC NORM HDFR GEST PDLO BRET NAQU OCCI AURA PACA
IDF 0.0 2.5 2.8 2.8 3.8 3.0 1.7 1.9 2.0 2.3 1.9 3.8
CVDL 2.5 0.0 0.4 0.9 1.5 0.5 1.4 2.0 0.8 0.2 0.6 2.6
BOFC 2.8 0.4 0.0 0.8 1.1 0.3 1.6 2.1 1.0 0.6 1.0 2.7
NORM 2.8 0.9 0.8 0.0 1.1 1.1 1.2 1.6 0.8 1.0 1.3 3.5
HDFR 3.8 1.5 1.1 1.1 0.0 1.2 2.3 2.6 1.8 1.7 2.1 3.6
GEST 3.0 0.5 0.3 1.1 1.2 0.0 1.9 2.4 1.3 0.7 1.1 2.5
PDLO 1.7 1.4 1.6 1.2 2.3 1.9 0.0 0.6 0.6 1.3 1.1 3.8
BRET 1.9 2.0 2.1 1.6 2.6 2.4 0.6 0.0 1.2 1.9 1.7 4.4
NAQU 2.0 0.8 1.0 0.8 1.8 1.3 0.6 1.2 0.0 0.7 0.7 3.3
OCCI 2.3 0.2 0.6 1.0 1.7 0.7 1.3 1.9 0.7 0.0 0.4 2.6
AURA 1.9 0.6 1.0 1.3 2.1 1.1 1.1 1.7 0.7 0.4 0.0 2.7
PACA 3.8 2.6 2.7 3.5 3.6 2.5 3.8 4.4 3.3 2.6 2.7 0.0

1.2.3 Espace des variables ordinales

On pourrait transformer nos deux variables \(X_1\) et \(X_2\) en rang pour en faire des distributions uniformes insensibles au jeu des valeurs exceptionnelles. Si l’on effectue une transformation en rang, la géométrie de l’espace devient celle d’une grille de 12 x 12 positions en fonction des rangs obtenus par les unités spatiales pour le vote Bardella ou le vote Maréchal. Dans cet espace discret (sauf en cas de valeurs ex aequo) il semble logique d’utiliser la somme des différences de rang en valeur absolue, c’est-à-dire la distance de Manhattan sur les variables transformées. Cette distance correspond au plus court chemin en suivant la grille qui croise les rangs de X1 et X2 :

# Calcul des rangs
don$Bardella_rnk <- rank(-don$Bardella)
don$Marechal_rnk <- rank(-don$Marechal)

# Représentation graphique
plot(x = don$Bardella_rnk,
     y = don$Marechal_rnk,
     asp = 1,
     xlab = "Rang pour le score Bardella (X1)",     
     ylab = "Rang pour le score Marechal (X2)",
     frame = TRUE,
     axes = FALSE,
     xlim = c(1, 12),
     ylim = c(1, 12),
     main = "Distances dans l'espace des rangs",
     pch = 20)

text(x = don$Bardella_rnk, y = don$Marechal_rnk,
     labels = don$regi_code, pos = 2, cex = 0.8, col = "red")

axis(1, at = seq(1, 12, 1), tck = 1, lty = 2, col = "gray")
axis(2, at = seq(1, 12, 1), tck = 1, lty = 2, col = "gray")

Calcul de la matrice de distance sur les rangs :

DS_Man_rnk <- as.matrix(dist(don[, 8:9],
                        method = "manhattan",
                        upper = TRUE,
                        diag = FALSE))

colnames(DS_Man_rnk) <- don$regi_code
rownames(DS_Man_rnk) <- don$regi_code
Dissimilarité de Manhattan sur les rangs
IDF CVDL BOFC NORM HDFR GEST PDLO BRET NAQU OCCI AURA PACA
IDF 0 10 13 15 20 11 9 11 10 8 4 11
CVDL 10 0 3 5 10 5 7 11 4 2 6 9
BOFC 13 3 0 4 7 4 8 12 5 5 9 8
NORM 15 5 4 0 5 8 6 8 5 7 11 12
HDFR 20 10 7 5 0 9 11 11 10 12 16 11
GEST 11 5 4 8 9 0 12 16 9 5 7 4
PDLO 9 7 8 6 11 12 0 4 3 7 7 16
BRET 11 11 12 8 11 16 4 0 7 11 11 20
NAQU 10 4 5 5 10 9 3 7 0 4 6 13
OCCI 8 2 5 7 12 5 7 11 4 0 4 9
AURA 4 6 9 11 16 7 7 11 6 4 0 9
PACA 11 9 8 12 11 4 16 20 13 9 9 0

Il existe de nombreuses autres solutions permettant de transformer le petit tableau de données en d’autres matrices de dissimilarité tout aussi légitimes que les trois présentées ci-dessus. On pourrait par exemple utiliser une autre métrique telle que distance de Tchebychev qui est la magnitude absolue maximale des différences entre les coordonnées des points.

Le point important à retenir avant de passer à la suite des analyses est que le choix de la matrice de dissimilarité exerce une influence cruciale sur les résultats des méthodes de classification ou de régionalisation qui vont être mises en œuvre. Or, ce choix est trop souvent implicite dans les logiciels de statistiques qui proposent par défaut des méthodes fondées sur la variance c’est-à-dire sur le carré des distances euclidiennes standardisées. Ce choix est le plus souvent justifié car il évite aux débutants en statistique des erreurs fatales telles que le fait de ne pas standardiser un jeu de variables hétérogènes ayant des unités de mesure et des ordres de grandeur différents. Mais il peut aussi aboutir à des résultats discutables ou du moins pas forcément les plus adaptés à la problématique.

1.3 Classification

1.3.1 Choix du critère à optimiser

Les méthodes de classification et de régionalisation ascendante hiérarchiques ont pour point commun d’opérer un regroupement des unités spatiales en allant des plus ressemblantes au moins ressemblantes. Elles fournissent un arbre de regroupement qui permet de visualiser chaque étape du regroupement et des critères permettant d’opérer un compromis entre l’homogénéité interne des classes ou régions et leur nombre.

Une bonne classification (ou une bonne régionalisation) devra comporter le moins de classes ou régions pour offrir un bon résumé. Mais également un nombre suffisant pour éviter de constituer des ensembles trop hétérogènes. On utilise souvent la part de variance expliquée par la partition pour mesurer cette qualité. Mais ce choix conduit à imposer une métrique (distance euclidienne) et un algorithme (critère de Ward). Il est plus intéressant de prendre un critère plus général fondé sur le rapport entre les dissimilarités internes et externes des entités constituées. Si on s’en tient à la définition de classes ou régions homogènes comme des groupes d’unités spatiales qui se ressemblent plus entre elles qu’elles ne ressemblent aux unités spatiales des autres groupes, alors notre critère à optimiser \(H\) prendra une des formes suivantes :

\[H = \frac{Dissimilarité \space inter \space groupe}{Dissimilarité \space intra \space groupe}\]

ou

\[H = \frac{Dissimilarité \space inter \space groupe}{Dissimilarité \space totale}\]

ou

\[H = 1- \frac{Dissimilarité \space intra \space groupe}{Dissimilarité \space totale}\]

1.3.2 Choix de l’algorithme de regroupement

Une classification ascendante hiérarchique peut s’opérer selon différents algorithmes qui correspondent à différents critères d’optimisation. Le critère qui semble intuitivement le plus simple est la minimisation des distances moyennes intra-classes et la maximisation des distances moyennes inter-classes. Cette méthode du average linkage est la plus simple à comprendre. Mais il existe beaucoup d’autres algorithmes cherchant par exemple à minimiser les distances minimales (single linkage), les distance maximales (complete linkage), les distances médianes, etc… La méthode par défaut de la plupart des logiciels de statistiques est appelée méthode de Ward qui consiste à minimiser la somme des distances entre les centres de gravité des classes ce qui la place l’analyse dans le cadre de l’analyse de la variance (Ward, 1963). Cette méthode comporte toutefois des variantes qui produisent des résultats différents comme cela a été démontré par Murtagh et Legendre (2014) et on distingue en pratique deux méthodes Ward.D et Ward.D2 qui s’appliquent à des distances simples ou des distances élevées au carré.

Pour assurer une bonne comparabilité des résultats de classification et de régionalisation, nous utiliserons ici la fonction R-base hclust() (hierarchical clustering) plutôt que la fonction HCPC() du package FactoMineR qui est plus puissante mais introduit souvent des modifications de l’algorithme de base à l’insu de l’utilisateur non averti (notamment le fait d’optimiser a posteriori les classes par une méthode de type k-means). La régionalisation sera faite à l’aide de la fonction constr.clust() du package adespatial qui reproduit fidèlement la méthode de la fonction hclust() en y ajoutant simplement une contrainte de contiguïté des unités regroupées. Pour plus de détail on se reportera à la description de la classification avec contrainte de contiguïté dans Guénard et Legendre (2022).

1.3.3 Comparaison des classifications

Nous allons examiner les résultats des classifications opérées sur les matrices de dissimilarité en distance euclidienne sur variables standardisées ou non standardisées et en distance de Manhtattan sur variables ordinales avec la même méthode Ward.D. Nous examinerons également dans chaque cas la distribution géographique des résultats pour une partition en trois classes afin de voir si les distributions spatiales obtenues correspondent ou non à des régionalisations de la France.

# CAH - Euclidienne non standardisée
cah_euc <- hclust(dist(DS_eucl), method = "ward.D")

# CAH - Euclidienne standardisée
cah_euc_std <- hclust(dist(DS_eucl_std), method = "ward.D")

# CAH - Manhattan ordinale
cah_man_rnk <- hclust(dist(DS_Man_rnk), method = "ward.D")

# Découpage en 3 classes
clas_euc <- as.factor(cutree(cah_euc, k = 3))
clas_euc_std <- as.factor(cutree(cah_euc_std, k = 3))
clas_man_rnk <- as.factor(cutree(cah_man_rnk, k = 3))

# Ajout des classifications (colonnes) dans la couche géographique
map$clas_euc  <- clas_euc 
map$clas_euc_std <- clas_euc_std
map$clas_man_rnk <- clas_man_rnk

Représentation graphique des classifications :

## 1.a Arbre CAH - Euclidienne non standardisée
plot(cah_euc,
     hang = -1,
     cex = 0.8,
     cex.main = 1,
     main = "1.a Distance euclidienne non standardisée",
     ylab = "Dissimilarité",
     sub = NA,
     xlab = "")
# ---

# 1.b Carte - CAH - Euclidienne non standardisée 
mf_map(map, type = "typo", var = "clas_euc")
mf_layout("1.b CAH en 3 classes", frame = TRUE, arrow = FALSE, credits = "")
# ---


## 2.a Arbre CAH - Euclidienne standardisée
plot(cah_euc_std,
     hang = -1,
     cex = 0.8,
     cex.main = 1,
     main = "2.a Distance euclidienne standardisée",
     ylab = "Dissimilarité",
     sub = NA,
     xlab = "")
# ---

# 2.b Carte - CAH - Euclidienne non standardisée 
mf_map(map, type = "typo", var = "clas_euc_std")
mf_layout("2.b CAH en 3 classes", frame = TRUE, arrow = FALSE, credits = "")
# ---


## 3.a Arbre CAH - Ordinale de Manhattan
plot(cah_man_rnk,
     hang = -1,
     cex = 0.8,
     cex.main = 1,
     main = "3.a Distance ordinale de Manhattan",
     ylab = "Dissimilarité",
     sub = NA,
     xlab = "")
# ---

# 3.b Carte - CAH - Ordinale de Manhattan 
mf_map(map, type = "typo", var = "clas_man_rnk")
mf_layout("3.b CAH en 3 classes", frame = TRUE, arrow = FALSE, credits = "")

1.4 Régionalisation

La fonction constr.hclust() du package adespatial permet de réaliser une classification ascendante hiérarchique sous contrainte de contiguïté en suivant un algorithme strictement comparable à celui d’une classification. La seule différence réside dans le fait d’éliminer des solutions en interdisant le regroupement d’unités spatiales si elles ne sont pas voisines ou, plus précisément connexes.

1.4.1 Graphe de contiguiïté

Pour bien comprendre la différence entre classification et régionalisation, il est intéressant de visualiser cartographiquement les matrices de contiguïté associés à chacune des deux méthodes.

  • la classification fait appel implicitement à un graphe complet qui est non planaire et dans lequel toutes les fusions d’unités spatiales en classes sont autorisées, qu’elles soient voisines ou non, connexes ou non.

  • la régionalisation fait de son côté appel à un graphe de voisinage qui est le plus souvent fondé sur la contiguïté administrative et de type planaire. On l’on obtient - dans l’exemple présenté ici - en détectant les régions qui ont une frontière commune. Il est facile de générer ce graphe en utilisant par exemple la fonction st_intersects() du package sf.

#### GRAPHE COMPLET
# Construction d'un tableau de lien (i, j) complet
reg_link_full <- expand.grid(i = mapdon$regi_code, 
                             j = mapdon$regi_code, 
                             stringsAsFactors = FALSE)

# Création de la couche géographique des liens
reg_links <- mf_get_links(x = mapdon, 
                          df = reg_link_full, 
                          x_id = "regi_code", 
                          df_id = c("i","j"))

# Cartographie
mf_map(mapdon)
mf_map(reg_links, col = "red3", add = TRUE)
mf_label(mapdon, var = "regi_code", cex = 1.3, col = "blue3", halo = TRUE, bg = "white")
mf_layout("Graphe complet", frame = TRUE, credits = "Grasland C., 2025")
# ---


#### GRAPHE DE VOISINAGE (contiguité)
# Calcul matrice de contiguïté
mat_conti <- st_intersects(mapdon, mapdon, sparse = FALSE)
colnames(mat_conti) <- mapdon$regi_code
rownames(mat_conti) <- mapdon$regi_code

# Suppression de la moitié de la matrice (et de la diagonale)
mat_conti[lower.tri(mat_conti, diag = TRUE)] <- FALSE

# Construction d'un tableau de lien (i, j) de contiguïté
reg_link_contig <- as.data.frame.table(mat_conti, responseName = "contig") |> 
                             filter(contig == TRUE)

# Création de la couche géographique de liens
reg_links_contig  <- mf_get_links(x = mapdon, 
                                  df = reg_link_contig, 
                                  x_id = "regi_code", 
                                  df_id = c("Var1","Var2"))
     
# Cartographie
mf_map(mapdon)
mf_map(reg_links_contig , col = "red3", add = TRUE)
mf_label(mapdon, var = "regi_code", cex = 1.3, col = "blue3", halo = TRUE, bg = "white")
mf_layout("Graphe de voisinage", frame = TRUE, credits = "Grasland C., 2025")

Il découle de ce qui précède une conséquence fondamentale qui est le fait qu’une régionalisation suppose un double choix en ce qui concerne la matrice de dissimilarité, d’une part, et la matrice de voisinage d’autre part. Or, si le choix de la contiguïté administrative paraît évident dans le cas étudié ici, d’autres solutions seraient possibles pour établir un graphe de voisinage aboutissant à d’autres formes de régionalisation. On peut en donner rapidement deux exemples.

  • Une triangulation de Delaunay pourrait par exemple être établie entre les centres des unités spatiales, qui aboutirait également à un graphe planaire mais ne respecterait pas forcément le critère de présence d’une frontière commune. On peut la réaliser facilement avec la fonction tri2nb() du package spdep.
  • La méthode des k plus proches voisins pourrait également servir à déterminer pour chaque unité spatiale les k plus proches en prenant comme critère la distance à vol d’oiseau entre leurs centres. On réalise facilement le graphe à l’aide des fonctions knearneigh() et knn() du package spdep. On obtient alors un graphe non planaire mais où chaque unité spatiale aurait des nombres de voisins plus proches que dans le cas du graphe de contiguïté (mais pas forcément égal).
#### GRAPHE DE VOISINAGE (triangulation de Delaunay)
## Matrice de contiguïté 
x <- tri2nb(coords = st_coordinates(st_centroid(mapdon)))
mat_contig_delaunay <- nb2mat(x)
colnames(mat_contig_delaunay) <- mapdon$regi_code
rownames(mat_contig_delaunay) <- mapdon$regi_code

# Construction d'un tableau de lien (i, j) de contiguïté 
reg_contig_delaunay <- as.data.frame.table(mat_contig_delaunay, 
                                           responseName = "contig_voronoi") |> 
                                    filter(contig_voronoi > 0)

# Création de la couche géographique de liens
reg_links_contig_delaunay  <- mf_get_links(x = mapdon, 
                                           df = reg_contig_delaunay, 
                                           x_id = "regi_code", 
                                           df_id = c("Var1","Var2"))
     
# Cartographie
mf_map(mapdon, col="lightyellow")
mf_map(reg_links_contig_delaunay , col = "red3", add = TRUE)
mf_label(mapdon, var = "regi_code", cex = 1.3, col = "blue3", halo = TRUE, bg = "white")
mf_layout("Triangulation de Delaunay", frame = TRUE, credits = "Grasland C., 2025")
# ---


#### GRAPHE DE VOISINAGE (méthode des k plus proches voisins)
## Matrice de contiguïté
x <- knearneigh(x = st_coordinates(st_centroid(mapdon)), k = 3)
x <- knn2nb(x)
mat_contig_kvoisins <- nb2mat(x)
colnames(mat_contig_kvoisins) <- mapdon$regi_code
rownames(mat_contig_kvoisins) <- mapdon$regi_code

# Construction d'un tableau de lien (i, j) de contiguïté 
mat_contig_kvoisins <- as.data.frame.table(mat_contig_kvoisins, 
                                           responseName = "k_voisins") |> 
                                  filter(k_voisins > 0)

# Création de la couche géographique de liens
reg_links_contig_kvoisins  <- mf_get_links(x = mapdon, 
                                           df = mat_contig_kvoisins, 
                                           x_id = "regi_code", 
                                           df_id = c("Var1","Var2"))
   
# Cartographie
mf_map(mapdon, col="lightyellow")
mf_map(reg_links_contig_kvoisins , col = "red3", add = TRUE)
mf_label(mapdon, var = "regi_code", cex = 1.3, col = "blue3", halo = TRUE, bg = "white")
mf_layout("Plus proches voisins (k=3)", frame=T, credits = "Grasland C., 2025")

1.4.2 Régionalisation

Comme dans le cas de la classification, il existe de nombreux algorithmes possibles pour regrouper les unités spatiales voisines en cherchant à minimiser les dissimilarités intra-régionales. L’un des plus complet est celui du logiciel Geoda (Anselin et al. (2009)) qui dispose d’une documentation très pédagogique sur chacun des algorithmes de régionalisation disponible ici. Malheureusement le package Rgeoda correspondant à l’application principale disponible sous windows n’est pas régulièrement mis à jour et était indisponible au moment de la rédaction de cet article.

Nous nous limiterons donc ici à l’algorithme de régionalisation réalisé par la fonction constr.hclust() du package adespatial qui présente l’intérêt d’utiliser exactement les mêmes formules de calcul que la fonction hclust() de R-base et offre une parfaite possibilité de comparaison des résultats entre les deux approches. Pour éviter de multiplier les exemples, nous nous limiterons ici à l’analyse des régionalisations fondées sur une matrice de contiguïté, en reprenant les trois matrices de dissimilarité précédentes.

# CAH contrainte - Euclidienne non standardisée
reg_euc <- constr.hclust(d = dist(DS_eucl), 
                         method = "ward.D", 
                         links = reg_link_contig)

# CAH - Euclidienne standardisée
reg_euc_std <- constr.hclust(d = dist(DS_eucl_std), 
                             method = "ward.D", 
                             links =reg_link_contig)

# CAH - Manhattan ordinale
reg_man_rnk <- constr.hclust(d = dist(DS_Man_rnk), 
                             method = "ward.D", 
                             links =reg_link_contig)

# Découpage en 3 classes
clas_euc <- as.factor(cutree(reg_man_rnk, k=3))
clas_euc_std <- as.factor(cutree(reg_euc_std, k=3))
clas_man_rnk <- as.factor(cutree(reg_man_rnk, k=3))

# Ajout des classifications (colonnes) dans la couche géographique
map$clas_euc  <- clas_euc 
map$clas_euc_std <- clas_euc_std
map$clas_man_rnk <- clas_man_rnk

Représentation graphique des classifications :

## 1.a Arbre CAH - Euclidienne non standardisée
plot(reg_euc,
     hang = -1,
     cex = 0.8,
     cex.main = 1,
     main = "1.a Distance euclidienne non standardisée",
     ylab = "Dissimilarité",
     sub = NA,
     xlab = "")
# ---

# 1.b Carte - CAH - Euclidienne non standardisée 
mf_map(map, type = "typo", var = "clas_euc")
mf_layout("1.b CAH-REG en 3 classes", frame = TRUE, arrow = FALSE, credits = "")
# ---


## 2.a Arbre CAH - Euclidienne standardisée
plot(reg_euc_std,
     hang = -1,
     cex = 0.8,
     cex.main = 1,
     main = "2.a Distance euclidienne standardisée",
     ylab = "Dissimilarité",
     sub = NA,
     xlab = "")
# ---

# 2.b Carte - CAH - Euclidienne non standardisée 
mf_map(map, type = "typo", var = "clas_euc_std")
mf_layout("2.b CAH-REG en 3 classes", frame = TRUE, arrow = FALSE, credits = "")
# ---


## 3.a Arbre CAH - Ordinale de Manhattan
plot(reg_man_rnk,
     hang = -1,
     cex = 0.8,
     cex.main = 1,
     main = "3.a Distance ordinale de Manhattan",
     ylab = "Dissimilarité",
     sub = NA,
     xlab = "")
# ---

# 3.b Carte - CAH - Ordinale de Manhattan 
mf_map(map, type = "typo", var = "clas_man_rnk")
mf_layout("3.b CAH-REG en 3 classes", frame = TRUE, arrow = FALSE, credits = "")

1.5 Conclusion

Au final, cet exercice souligne la complexité des options possibles du fait du nombre de choix qu’il faut opérer pour réaliser une classification et, a fortiori une régionalisation. Encore n’avons-nous pas fait état de l’ensemble des solutions alternatives, notamment celles qui se fondent sur des méthodes de classification descendantes que l’on trouve dans l’excellent package R Rainet ou sur des méthodes de type noyaux mobiles disponibles dans R-base avec la fonction kmeans.

Mais la question la plus fondamentale est probablement la suivante : quel est l’apport d’une régionalisation par rapport à une classification pour l’analyse d’un phénomène social ? Puisque nous avons vu qu’une régionalisation est par définition moins efficace qu’une classification pour constituer des groupes homogènes, il faut que la prise en compte des contraintes spatiales apporte un avantage décisif à la régionalisation pour choisir de la mettre en œuvre. Ce qui suppose que la matrice de voisinage ait un sens pour la personne qui va interpréter les résultats.

C’est ce point que nous allons maintenant explorer en étudiant l’ensemble des résultats des élections européennes à trois niveaux d’agrégation.

2 Échelle départementale : classification et régionalisation hiérarchiques

La réalisation d’une classification et d’une régionalisation des résultats des élections européennes va être menée à différentes échelles, depuis le niveau des régions jusqu’à celui des circonscriptions en passant par le niveau départemental. L’objectif sera de construire des classes ou des régions présentant des profils électoraux homogènes en matière de vote.

Préalablement à ces analyses, il est important d’analyser la distribution des votes afin de distinguer l’implantation spatiale des listes candidates à ce scrutin européen afin de repérer celles qui vont le plus contribuer aux différenciations au niveau national ou au niveau local.

2.1 Analyse des listes

Les électeurs français ont eu le choix entre 38 listes lors des élections européennes de juin 2024 (cf. données). Mais seule une partie d’entre elles a connu une audience nationale et beaucoup de petites listes n’ont même pas été capable de fournir des bulletins dans tous les bureaux de votes.

2.1.1 Loi rang-taille ?

La distribution du pourcentage de votes en fonction du rang des listes suit une loi exponentielle presque parfaite (\(r^2 =0.98 , p < 0.001\))

# Chargement des métadonnées sur les listes électorales
listes <- readRDS("data/net/don_listes.RDS")

# Chargement des résultats de vote par circonscriptions
don_cir <- readRDS("data/net/don_circ.RDS") 
result_vote <- don_cir[, 12:49]

# Calcul % national de vote
listes$pct <- 100 * apply(result_vote, 2, sum) / sum(result_vote)

# Calcul indice de Gini
listes$gini <- apply(result_vote, 2, ineq::Gini)

# Calcul du rang en fonction du pourcentage de vote
listes$rang <- rank(-listes$pct)

# Régression linéaire
mod <- lm(log(listes$pct) ~ listes$rang)

# Graphique rang-taille
ggplot(listes, aes(x = rang, y = pct, label = tete_nom)) +
  geom_point() +
  geom_line() +
  geom_text_repel(cex = 3) +
  scale_x_continuous("Rang") +
  scale_y_log10("Part des suffraxes exprimés (%)") +
  geom_smooth(method = "lm") +
  theme_minimal() +
  ggtitle("Relation entre le % de voix et le rang des listes")

Résumé statistique de la régression linéaire :

Variable dépendante
% de votes reçus par une liste (log)
Rang de la liste -0.247***
(0.006)
Constant 2.989***
(0.133)
Observations 38
R2 0.980
Adjusted R2 0.979
Residual Std. Error 0.402 (df = 36)
F Statistic 1,725.409*** (df = 1; 36)
Note: p<0.1; p<0.05; p<0.01

2.1.2 Typologie

La régularité de la loi précédente ne permet pas d’établir une rupture nette permettant de séparer grandes et petites listes. Mais une typologie combinant le logarithme du score national en % et l’indice de concentration de Gini par circonscription permet de mieux distinguer des listes mineures ayant obtenu des votes dans un petit nombre de circonscription et des listes d’audience nationale ayant obtenu des voix dans un nombre plus important de circonscriptions même lorsque leur score est faible.

# Passage en logarithme du % national et l’indice de Gini
tab_log <- cbind(log(listes$pct), listes$gini)

# Classification par la méthode des k-means
w <- kmeans(tab_log, centers = 2, iter.max = 1000)

# Récupération de la classification (colonne "type")
listes$type <- as.factor(w$cluster)
levels(listes$type) <- c("Listes nationales", "Listes mineures")

# Représentation graphique de la classification
ggplot(listes, aes(x = pct, y = gini, label = tete_nom, colour = type)) +
  geom_point() +
  geom_text_repel(cex = 3) +
  stat_ellipse() +
  scale_x_log10("Score national (en %)") +
  scale_y_continuous("Indice de concentration de Gini") +
  theme_light() +
  ggtitle("Typologie des listes candidates aux élections européennes de juin 2024")

2.2 Classification

2.2.1 Choix de la matrice de dissimilarité

On choisit comme matrice de dissimilarité le coefficient de divergence c’est-à-dire la part des électeurs qui devrait changer de votes pour que les deux unités spatiales affichent le même profil électoral. Cet indice correspond à la moitié de la distance de Manhattan entre les profils en pourcentage :

\[\frac{1}{2} \sum_{p=1}^{38} {|\frac{X_{ip}}{X_{i.}} - \frac{X_{jp}}{X_{j.}}|}\]

On peut illustrer le calcul en prenant l’exemple de la plus forte dissimilarité qui est observée entre le département de l’Aisne (02) et le département de Paris (75) :

# Chargement des résultats par département et d'un fond de carte
map_dept <- readRDS("data/net/map_dept.RDS")
don_dept <- readRDS("data/net/don_dept.RDS")

# Calcul répartition % de vote par département pour chaque liste
result_vote_dep <- don_dept[, 11:48]
mat_vote_dep <- 100 * result_vote_dep / apply(result_vote_dep, 1, sum) 
rownames(mat_vote_dep) <- don_dept$dept
colnames(mat_vote_dep) <- listes$tete_nom

# Calcul des différences de entre le l'Aisne et Paris
tab_diff <- data.frame(t(mat_vote_dep[c("02", "75"), ]))
names(tab_diff) <- c("Aisne (02)", "Paris (75)")
tab_diff$dif <- tab_diff[, 1] - tab_diff[, 2]
# Différence absolue
tab_diff$difabs <- abs(tab_diff$dif)

# Calcul des totaux
tab_diff <- rbind(tab_diff, apply(tab_diff, 2, sum))
row.names(tab_diff)[nrow(tab_diff)] <- "Total"

# Affichage de la table
kable(tab_diff, digits = 1 )
Aisne (02) Paris (75) dif difabs
DEHER-LESAINT 0.0 0.0 0.0 0.0
PONGE 0.0 0.0 0.0 0.0
MARÉCHAL 5.0 5.9 -0.9 0.9
AUBRY 5.3 16.8 -11.5 11.5
BARDELLA 50.6 8.5 42.1 42.1
TOUSSAINT 2.4 10.7 -8.3 8.3
AZERGUI 0.0 0.0 0.0 0.0
THOUY 2.4 1.2 1.2 1.2
TERRIEN 0.0 0.0 0.0 0.0
ZORN 0.1 0.4 -0.3 0.3
HAYER 11.3 17.7 -6.4 6.4
ALEXANDRE 0.0 0.0 0.0 0.0
CHOLLEY 0.2 0.4 -0.3 0.3
WEHRLING 0.3 0.3 0.0 0.0
ASSELINEAU 0.9 0.8 0.1 0.1
SIMONIN 0.0 0.0 0.0 0.0
FORTANÉ 0.0 0.0 0.0 0.0
BELLAMY 6.2 10.5 -4.2 4.2
ARTHAUD 0.7 0.3 0.5 0.5
LARROUTUROU 0.0 0.1 -0.1 0.1
RENARD-KUZMANOVIC 0.1 0.1 0.0 0.0
LABIB 0.1 0.1 0.0 0.0
ADOUE 0.0 0.0 0.0 0.0
PHILIPPOT 0.9 0.6 0.3 0.3
HUSSON 0.0 0.0 0.0 0.0
BONNEAU 0.0 0.0 0.0 0.0
GLUCKSMANN 7.8 22.9 -15.1 15.1
HOAREAU 0.0 0.0 0.0 0.0
LASSALLE 2.2 0.4 1.8 1.8
LALANNE 0.0 0.0 0.0 0.0
LACROIX 0.2 0.2 0.0 0.0
ELMAYAN 0.0 0.0 0.0 0.0
DEFFONTAINES 2.3 1.4 0.9 0.9
COSTE-MEUNIER 0.0 0.0 0.0 0.0
GOVERNATORI 0.8 0.6 0.2 0.2
TRAORÉ 0.0 0.0 0.0 0.0
PATAS D’ILLIERS 0.0 0.0 0.0 0.0
GRUDÉ 0.0 0.0 0.0 0.0
Total 100.0 100.0 0.0 94.5
# Calcul matrice de dissimilarité
dissim <- dist.ldc(mat_vote_dep, method = "manhattan") / 2
Info -- For this coefficient, sqrt(D) would be Euclidean
Info -- This coefficient does not have an upper bound (no fixed D.max)

2.2.2 Résultats de la classification

L’application d’une méthode de classification ascendante hiérarchique à la matrice de dissimilarité fait apparaître assez nettement cinq classes qui regroupent souvent des départements voisins mais sans pour autant former des régions.

# Classification
cah_dissim <- hclust(dissim, method = "ward.D")

# Découpage en 5 classes
clas_dissim <- as.factor(cutree(cah_dissim, 5))

# Classe d'appartenance pour chaque département (fond de carte)
map_dept$cah_dissim <- as.factor(clas_dissim)

## A. Arbre CAH - Dissimilarité 
plot(cah_dissim, hang = -1, cex = 0.5, main = "Arbre de classification")
# ---

# B. Carte - CAH - Dissimilarité 
mf_map(map_dept, type = "typo", var = "cah_dissim", leg_title = "Classes")
mf_layout("CAH - Dissimilarité - 5 classes - par département",
  credits = "Mehode de Ward appliquée à la distance de divergence",
  frame = TRUE, scale = TRUE, arrow = FALSE)

Une analyse des profils permet ensuite de caractériser ces classes.

# Calcul % national de vote
tabres <- data.frame(mat_vote_dep) 
tot <- tabres |>  summarise_all(.funs = c("mean"))

# Récupération de la classe d'appartenance
tabres$clas_dissim <- clas_dissim

# Moyenne % vote pour chaque classe
res <- tabres |> group_by(clas_dissim) |> summarise_all(.funs = c("mean"))

# Calcul écarts des classes au profil moyen
mat <- res[, -1]
for (i in 1:5) {mat[i, ] <- mat[i, ] - as.matrix(tot)}
mat <- as.data.frame(t(mat))
colnames(mat) <- c("Classe1", "Classe2", "Classe3", "Classe4", "Classe5")

# Ajout ligne de totaux
mat$Profil <- as.numeric(tot)

Écart des classes au profil moyen (listes principales) :

Classe1 Classe2 Classe3 Classe4 Classe5 Profil
BARDELLA 1.50 7.52 -3.97 -2.43 -13.69 33.88
HAYER -0.55 -1.31 2.56 -1.05 1.23 14.11
GLUCKSMANN -0.91 -2.78 2.01 2.46 2.85 13.43
AUBRY 0.74 -1.89 -1.24 -1.94 8.59 8.28
BELLAMY -0.32 -0.17 0.19 -0.34 1.06 7.12
MARÉCHAL 0.10 0.38 -0.42 -0.36 -0.04 5.34
TOUSSAINT 0.03 -1.47 1.15 -0.38 2.44 4.90
LASSALLE -0.79 -0.12 -0.36 3.66 -1.94 3.08
DEFFONTAINES -0.10 -0.03 -0.08 0.75 -0.47 2.53
THOUY 0.09 0.20 -0.07 -0.24 -0.30 2.07
GOVERNATORI 0.11 -0.13 0.18 -0.16 0.04 1.23
ASSELINEAU 0.04 -0.02 -0.05 0.11 -0.03 1.02
PHILIPPOT 0.04 0.05 -0.05 0.04 -0.17 0.95

2.3 Régionalisation

2.3.1 Matrice de contiguïté

On calcule la matrice de contiguïté au niveau départemental à l’aide du package sf. Puis, on les visualise cartographiquement.

mapdon_dept <- left_join(map_dept, don_dept)


#### GRAPHE DE VOISINAGE (contiguité)
# Calcul matrice de contiguïté
mat_conti <- st_intersects(mapdon_dept, mapdon_dept, sparse = FALSE)
colnames(mat_conti) <- mapdon_dept$dept
rownames(mat_conti) <- mapdon_dept$dept

# Suppression de la moitié de la matrice (et de la diagonale)
mat_conti[lower.tri(mat_conti, diag = TRUE)] <- FALSE

# Construction d'un tableau de lien (i, j) de contiguïté
reg_link_contig <- as.data.frame.table(mat_conti, responseName = "contig") |> 
                             filter(contig == TRUE)

# Création de la couche géographique de liens
reg_links_contig  <- mf_get_links(x = mapdon_dept, 
                                  df = reg_link_contig, 
                                  x_id = "dept", 
                                  df_id = c("Var1","Var2"))
     
# Cartographie
mf_map(mapdon_dept)
mf_map(reg_links_contig , col = "red3", add = TRUE)
mf_label(mapdon_dept, var = "dept", col = "blue3", halo = TRUE, bg = "white")
mf_layout("Graphe de voisinage", frame = TRUE, credits = "Grasland C., 2025")

2.3.2 Dissimilarités locales

Avant de procéder à la régionalisation, on peut visualiser les discontinuités en extrayant les frontières des unités spatiales à l’aide de la fonction mf_get_borders()du package mapsf et en effectuant une jointure avec les valeurs de dissimilarité (Grasland, 1997). On pourra ainsi repérer les limites qui séparent des départements très ressemblants (donc susceptibles de se regrouper en régions) ou au contraire très différents (qui seront probablement localisés dans des régions différentes).

# Conversion de la matrice de dissimilarité en tableau long
m <- as.matrix(dissim)
tab_dis <- cbind(expand.grid(dimnames(m)), value = as.vector(m))
names(tab_dis ) <- c("i", "j", "DSij")

# Extraction des frontières d'unités spatiale
map_border_dep <- mf_get_borders(mapdon_dept)[, c("dept", "dept.1")]
names(map_border_dep) <- c("i", "j", "geometry")

# Jointure
map_border_dep <- merge(map_border_dep, tab_dis, by = c("i", "j"))

# Cartographie des dissimilarités les plus fortes
mf_map(mapdon_dept, type = "base", col = "lightyellow")
mf_map(map_border_dep,
       type = "prop",
       col = "red",
       var = "DSij",
       val_max = 70,
       leg_pos = "left")
mf_layout("Cartographie des discontinuités", frame = TRUE, credits = "Grasland C., 2025")

Une approche différente, proposée par les écologues, consiste à mesurer la contribution des unités spatiales et des variables les décrivant à la production des dissimilarités au niveau global et local. Cette approche est classiquement menée à l’aide de mesures basées sur la variance, mais les auteurs proposent de la généraliser à une mesure quelconque de dissimilarité ce qui permet une meilleure adéquation à la problématique (Legendre et De Cáceres, 2013). Et qui permet d’appliquer la méthode non pas à l’ensemble des dissimilarités (comme dans une ACP ou une CAH) mais uniquement aux dissimilarités locales.

2.3.3 Résultats de la régionalisation

La réalisation d’une régionalisation ascendante hiérarchique est très simple avec la fonction constr.hclust()du package adespatial.

# Régionalisation ascendante hiérarchique
regio <- constr.hclust(d = dissim, method = "ward.D", links = reg_link_contig)

# Arbre de classification
plot(regio,
     main = "Arbre de classification",
     hang = -1,
     cex = 0.7)
# ---

# Hiérarchie des nœuds
barplot(rev(regio$height)[1:20],
        main = "Hiérarchie des nœuds",
        names.arg = 1:20,
        cex.names = 0.4)

On peut représenter les quatre niveaux de régionalisation en effectuant un découpage de l’arbre à l’aide de la fonction cutree() et d’un package quelconque de cartographie thématique dans R comme mapsf ou tmap.

mapdon_dept$reg2 <- as.factor(cutree(regio, 2))
mapdon_dept$reg3 <- as.factor(cutree(regio, 3))
mapdon_dept$reg4 <- as.factor(cutree(regio, 4))
mapdon_dept$reg10 <- as.factor(cutree(regio, 10))


mf_map(mapdon_dept, var="reg2",type="typo", leg_title = "Classes")
mf_layout("2 régions", credits = "", scale=TRUE, frame=TRUE, arrow=FALSE)
#---

mf_map(mapdon_dept, var="reg3",type="typo", leg_title = "Classes")
mf_layout("3 régions", credits = "", scale=TRUE, frame=TRUE, arrow=FALSE)
#---

mf_map(mapdon_dept, var="reg4",type="typo", leg_title = "Classes")
mf_layout("4 régions", credits = "", scale=TRUE, frame=TRUE, arrow=FALSE)
#---

mf_map(mapdon_dept, var="reg10",type="typo", leg_title = "Classes")
mf_layout("10 régions", credits = "", scale=TRUE, frame=TRUE, arrow=FALSE)

Mais on peut également utiliser la fonction plot:constr.hclust() du package adespatial à condition de lui fournir les centroïdes des unités spatiales. On peut alors visualiser la façon dont le graphe de contiguïté a été segmenté pour aboutir à une régionalisation. Il est alors intéressant d’y superposer la carte des discontinuités pour mieux visualiser comment les régions respectent dans la mesure du possible les frontières correspondant aux plus fortes différences entre unités voisines.

# Extraction des coordonnées des centroïdes des départements
dep_centroide <- st_coordinates(st_centroid(mapdon_dept))

# Régionalise
regio <- constr.hclust(d = dissim,
                       method = "ward.D",
                       links = reg_link_contig,
                       coords = dep_centroide)


# Trace le fonds de carte et les discontinuités
mf_map(mapdon_dept, type="base", col="white",border="black",lwd=0.2)
mf_map(map_border_dep,
       type = "prop",
       col = "gray50",
       var = "DSij",
       lwd_max = 5,
       leg_pos = "left",
       add = TRUE)
mf_layout("Relation entre régionalisation et discontinuités", frame = TRUE)
plot(regio, k = 10, links = TRUE, axes = FALSE, plot = FALSE, hybrids = "no")

On procède maintenant à l’analyse des écarts au profil moyen en reprenant la même procédure que pour la classification. Pour faciliter l’analyse, on recode les noms de régions pour combiner les partitions en trois régions (Nord-Est = NE, Sud-Ouest = SO, Ile-de-France = IF) et la partition en 10 (les quatre sous-régions du Nord-Est sont codées NE1, NE2, NE3, NE4, les trois régions du Sud-Ouest SO1, SO2, SO3 et les trois régions d’Ile-de-France IF1, IF2, IF3)

# Suppression colonne classification précédente
tabres <- tabres[, -39]

# Ajout classification en 10 classe
tabres$clas_10 <- cutree(regio, 10)

# calcul moyennes des classes
res <- tabres |> group_by(clas_10) |> summarise_all(.funs = c("mean"))
mat <- res[, -1]

# Calcul écarts des classes au profil moyen
for (i in 1:10) {mat[i, ] <- mat[i, ] - as.matrix(tot)}

# Transposition de la matrice to dataframe
mat <- as.data.frame(t(mat))

# Renommage des colonnes
colnames(mat) <- c("NE1","NE2","NE3","NE4",
                   "SO1","SO2","SO3",
                   "IDF1","IDF2","IDF3")

# Ajout ligne de totaux
mat$Profil <- as.numeric(tot)

Écart des régions au profil moyen (listes principales) :

NE1 NE2 NE3 NE4 SO1 SO2 SO3 IDF1 IDF2 IDF3 Profil
BARDELLA 2.57 9.65 4.04 -4.51 -4.33 -1.37 -5.42 -18.93 -5.51 -17.00 33.88
HAYER 0.29 -1.26 -2.24 0.67 -0.73 -0.98 3.59 3.38 -0.90 -5.80 14.11
GLUCKSMANN -1.49 -3.85 -0.93 1.15 4.02 1.53 2.81 3.81 -1.09 -0.67 13.43
AUBRY -1.12 -1.84 0.20 1.11 -1.16 -1.84 -1.54 8.29 9.55 28.84 8.28
BELLAMY 0.48 -0.18 -1.28 0.33 -1.79 0.77 0.30 3.40 -0.52 -3.08 7.12
MARÉCHAL 0.11 -0.28 1.12 0.37 -0.27 -0.54 -0.70 0.91 -0.13 -1.63 5.34
TOUSSAINT -0.62 -1.63 -0.46 2.32 0.31 -0.46 1.45 2.79 0.05 1.75 4.90
LASSALLE -0.51 -0.41 -0.14 -1.16 3.69 2.27 -0.36 -2.43 -1.99 -2.44 3.08
DEFFONTAINES -0.11 -0.14 -0.03 -0.63 0.42 0.99 -0.15 -0.69 -0.35 0.29 2.53
THOUY 0.21 0.38 -0.16 -0.24 -0.31 -0.09 -0.14 -0.42 0.29 -0.45 2.07
GOVERNATORI 0.06 -0.11 -0.10 0.25 -0.07 -0.11 0.18 -0.12 0.12 -0.34 1.23
ASSELINEAU 0.00 -0.13 0.13 0.09 0.12 0.04 -0.13 -0.06 0.19 0.09 1.02
PHILIPPOT 0.07 -0.03 0.12 0.00 0.04 -0.03 -0.10 -0.21 -0.03 -0.18 0.95

2.4 Discussion

Quels sont les apports respectifs des deux approches de régionalisation et de classification à cette échelle d’agrégation départementale ?

2.4.1 Intérêt et limites de la classification

L’analyse de classification offre obligatoirement un meilleur résumé de l’information contenue dans la matrice de dissimilarité dans la mesure où elle ne subit pas la contrainte de contiguïté qui est imposée à la régionalisation. Même si la méthode de classification ascendante hiérarchique n’aboutit pas nécessairement à une solution optimale en matière de maximisation de l’homogénéité intra-classe et de l’hétérogénéité inter-classe (la méthode des k-means est a priori plus efficace et moins coûteuse en temps de calcul), elle présente l’avantage de fournir des résumés à différents niveaux d’agrégation et de distinguer des types et des sous-types à l’intérieur de ceux-ci.

La limite de la méthode concerne sa visualisation cartographique qui laisse apparaître des blocs régionaux mais qui correspondent rarement à une classe unique. Les résultats n’ont pas vocation à produire une géographie du vote même si le commentaire des résultats fait appel à des notions de voisinage et de localisation.

2.4.2 Intérêt et limites de la régionalisation

L’analyse de la régionalisation possède les mêmes propriétés de regroupement hiérarchique en régions qui se subdivisent ensuite en sous-région ce qui permet une analyse nuancée des oppositions principales et secondaires. L’analyse géographique des résultats permet donc bien de construire un commentaire multiscalaire partant des divisions principales (“Nord-Est/ Nord-Ouest/ Ile-de-France) pour extraire ensuite des subdivisions secondaires ce qui est la procédure habituelle de la description d’un espace géographique.

La limite de l’analyse tient ici au poids de la contrainte de contiguïté qui oblige à regrouper les entités à l’intérieur d’un ensemble d’unités voisines même lorsqu’elles sont séparées par des discontinuités extrêmement élevées. Ce qui aboutit à une hétérogénéité parfois très élevé des entités regroupées.

3 Échelle des circonscriptions : gradients urbains ou discontinuités ?

La reproduction des analyses précédentes au niveaux des 535 circonscriptions législatives constitue de prime abord un avantage puisque ces unités spatiales ont des populations beaucoup plus proches entre elles que les départements. La loi impose en effet des seuils minimum et maximum de population à ces unités afin d’assurer une représentation équitable des citoyens à l’Assemblée Nationale. Malgré les exceptions (départements peu peuplés ayant au moins un député) et les manipulations de limites pour favoriser tel ou tel parti (gerrymandering),les circonscriptions sont un cadre idéal d’observation des résultats des élections européennes … surtout lorsqu’elles sont suivies d’une dissolution de l’Assemblée Nationale comme ce fut le cas en 2024.

Ce changement d’échelle entraîne toutefois un saut de complexité dans l’analyse puisque les oppositions entre les espaces ruraux, périurbain et métropolitain qui étaient encore peu visibles à l’échelle d’observation des départements sont désormais fondamentales et créent pour beaucoup de partis politiques des distributions en “peau de léopard” composées de taches isolées (e.g. liste LFI présente surtout en ville) ou de nappes percées de trous (e.g. vote RN majoritaire ou largement en tête dans les zones rurales et fortement réduit dans les métropoles). La question est alors de savoir si la transition entre espaces métropolitains et ruraux s’opère de façon graduelle (hypothèse du gradient d’urbanité) ce qui autoriserait la création de régions de proche en proche. Ou si on passe brutalement d’un comportement à un autre ce qui ferait des métropoles des enclaves bien délimitées cernées par des discontinuités.

Une carte publiée par O. Finance dans Cybergeo à propos du premier tour des élections présidentielle de 2022 à l’échelle des intercommunalités montre clairement l’existence d’une double structure à la fois régionale et métropolitaine :

3.1 Matrice de dissimilarité

On charge les fichiers de circonscriptions et on construit la matrice de dissimilarité en utilisant la même procédure que pour les départements (cf. partie 2.2).

# Chargement des résultats par circonscription et d'un fond de carte
map_circ <- readRDS("data/net/map_circ.RDS")
don_circ <- readRDS("data/net/don_circ.RDS")

# Calcul répartition % de vote par circonscription pour chaque liste
result_vote_circ <- don_circ[, 12:49]
mat_vote_circ <- 100 * result_vote_circ / apply(result_vote_circ, 1, sum) 
rownames(mat_vote_circ) <- don_circ$circ
colnames(mat_vote_circ) <- listes$tete_nom

# Dissimilarité
dissim <- dist.ldc(mat_vote_circ, method = "manhattan") / 2
Info -- For this coefficient, sqrt(D) would be Euclidean
Info -- This coefficient does not have an upper bound (no fixed D.max)

On prépare ensuite la la matrice de contiguïté des circonscriptions en suivant là encore la procédure utilisée pour les départements (cf. partie 2.3).

# Jointure fond de carte et résultat de vote
mapdon_circ <- left_join(map_circ, don_circ)

# Matrice de contiguïté
mat_conti <- st_intersects(mapdon_circ, mapdon_circ, sparse = FALSE)
colnames(mat_conti) <- mapdon_circ$circ
rownames(mat_conti) <- mapdon_circ$circ

# Suppression de la moitié de la matrice (et de la diagonale)
mat_conti[lower.tri(mat_conti, diag = TRUE)] <- FALSE

# Construction d'un tableau de lien (i, j) de contiguïté
circ_link_contig <- as.data.frame.table(mat_conti, responseName = "contig") |> 
                             filter(contig == TRUE)

# Création de la couche géographique de liens
circ_links_contig  <- mf_get_links(x = mapdon_circ, 
                                  df = circ_link_contig, 
                                  x_id = "circ", 
                                  df_id = c("Var1","Var2"))
     
# Cartographie
mf_map(mapdon_circ,col="lightyellow")
mf_map(circ_links_contig , col = "red3", add = TRUE)
mf_layout("Matrice de contiguïté des circonscriptions", credits = "Grasland C., 2025")

Pour mieux visualiser les zones urbaines, on peut créer une carte par anamorphose à l’aide de la fonction cartogramR() du package du même nom. On prend comme variable de poids le nombre de votants ce qui donne des surfaces approximativement égales aux unités spatiales.

# Construction du cartogramme en fonction du nombre de votants
cartogram_R <- cartogramR(mapdon_circ,
                          count = "vot",
                          method = "dcn")$cartogram |>
                st_as_sf()

### CG to HP : j'ai supprimé les options qui provoquaient une erreur ###
                
# Jointure cartogramme et résultats de vote
cartogram_circ <- left_join(cartogram_R, don_circ)

# Matrice de contiguïté du cartogramme
mat_conti <- st_intersects(cartogram_circ, cartogram_circ, sparse = FALSE)
colnames(mat_conti) <- cartogram_circ$circ
rownames(mat_conti) <- cartogram_circ$circ

# Suppression de la moitié de la matrice (et de la diagonale)
mat_conti[lower.tri(mat_conti, diag = TRUE)] <- FALSE

# Construction d'un tableau de lien (i, j) de contiguïté
circ_link_contig <- as.data.frame.table(mat_conti, responseName = "contig") |> 
                             filter(contig == TRUE)

# Création de la couche géographique de liens
circ_links_contig  <- mf_get_links(x = cartogram_circ, 
                                  df = circ_link_contig, 
                                  x_id = "circ", 
                                  df_id = c("Var1","Var2"))

mf_map(cartogram_R, col = "lightyellow")
mf_map(circ_links_contig , col = "red3", add = TRUE)
mf_layout("Matrice de contiguïté des circonscriptions (anamorphosée)",
           credits = "Grasland C., 2025")

3.2 Classification

La classification fait nettement ressortir une division en 4 classes, sans rupture manifeste au delà de ce seuil.

# Classification
cah <- hclust(dissim, method = "ward.D")


## A. Arbre CAH - Dissimilarité 
plot(cah, hang = -1, cex = 0.5, main = "Arbre de classification")
# ---

# B. Carte - CAH - Dissimilarité 
barplot(rev(cah$height)[1:15],
        names.arg = 1:15,
        cex.names = 0.6)

La cartographie de ces classes met en évidence une coupure évidente entre les espaces métropolitains et les espaces périphériques, chacun d’entre eux se subdivisant ensuite en deux sous-types.

# Découpage en 4 classes
clas <- as.factor(cutree(cah, 4))
levels(clas) <- c("Metrop. 1", "Metrop. 2", "Periph. 1", "Periph. 2")
mapdon_circ$cah <- clas
cartogram_R$cah <- clas

# Création d'unee palette de couleur
mypal <- c("red", "orange", "lightgreen", "darkgreen")

# Carte - découpage réel des circonscriptions
mf_map(mapdon_circ,
       type = "typo",
       var = "cah",
       leg_title = "Classes",
       lwd = 0.5,
       leg_pos = "bottomleft",
      pal = mypal)

mf_layout(title = "Classification des circonscriptions",
          credits = "Mehode de Ward appliquée à la distance de divergence",
          arrow = FALSE)
# ---


# Carte - cartogramme en fonction du nombre de votants
mf_map(cartogram_R,
       type = "typo",
       var = "cah",
       leg_title = "Classes",
       lwd = 0.5,
       leg_pos = "bottomleft",
       pal = mypal)

mf_layout(title = "Classification des circonscriptions (anamorphose)",
          credits = "Mehode de Ward appliquée à la distance de divergence",
          arrow = FALSE)

Le profil des quatre classes est assez simple à interpréter puisqu’il s’ordonne presque parfaitement en fonction du score de la liste du RN de Bardella.

# Calcul % national de vote
tabres <- data.frame(mat_vote_circ) 
tot <- tabres |>  summarise_all(.funs = c("mean"))


# Récupération de la classe d'appartenance
tabres$clas <- clas


# Moyenne % vote pour chaque classeclasse
res <- tabres |> group_by(clas) |> summarise_all(.funs = c("mean"))

# Calcul écarts des classes au profil moyen
mat <- res[, -1]
for (i in 1:5) {mat[i, ] <- mat[i, ] - as.matrix(tot)}
mat <- as.data.frame(t(mat))
### Elimine une colonne vide
mat<-mat[,-5]
###
colnames(mat) <- c("Metrop.1", "Metrop.2", "Periph.1", "Periph.2")

# Ajout ligne de totaux
mat$Profil <- as.numeric(tot)

Écart des régions au profil moyen (listes principales) :

Metrop.1 Metrop.2 Periph.1 Periph.2 Profil
BARDELLA -16.65 -10.18 -0.97 10.55 31.57
HAYER 3.61 -3.10 1.38 -1.74 14.28
GLUCKSMANN 5.97 -0.20 1.29 -3.48 13.63
AUBRY 3.01 16.82 -3.08 -3.47 10.57
BELLAMY 2.78 -1.91 0.21 -0.63 7.16
TOUSSAINT 3.69 0.84 0.27 -1.94 5.37
MARÉCHAL 0.32 -0.95 -0.04 0.23 5.37
DEFFONTAINES -0.70 0.16 -0.03 0.25 2.41
LASSALLE -1.52 -1.52 0.75 0.30 2.32
THOUY -0.45 -0.16 -0.03 0.25 2.03
GOVERNATORI -0.03 -0.15 0.16 -0.10 1.24
ASSELINEAU -0.13 0.08 0.05 -0.03 1.00
PHILIPPOT -0.21 -0.14 0.05 0.08 0.91

3.3 Régionalisation

Comme on peut le constater, cette configuration des classes est a priori très défavorable à la constitution de régions sauf à fusionner les différents types mis en évidence par la classification. La carte des discontinuités entre les circonscriptions confirme l’existence de très fortes différences entre les zones urbaines et les espaces périurbains ou ruraux qui les entourent.

# Conversion de la matrice de dissimilarité en tableau long
m <- as.matrix(dissim)
tab_dis <- cbind(expand.grid(dimnames(m)), value = as.vector(m))
names(tab_dis ) <- c("i", "j", "DSij")

# Extraction des frontières d'unités spatiale
map_border_circ <- mf_get_borders(mapdon_circ)[, c("circ", "circ.1")]
names(map_border_circ) <- c("i", "j", "geometry")

# Jointure
map_border_circ <- merge(map_border_circ, tab_dis, by = c("i", "j"))

# Cartographie des dissimilarités les plus fortes
mf_map(mapdon_circ, type = "base", col = "lightyellow")
mf_map(map_border_circ,
       type = "prop",
       col = "red",
       var = "DSij",
       val_max = 70,
       leg_pos = "left")
mf_layout("Cartographie des discontinuités", frame = TRUE, credits = "Grasland C., 2025")

L’application de l’algorithme de régionalisation conduit pourtant à identifier des niveaux de découpage pertinents en 2, 3, 5 ou 12 régions.

# Régionalisation ascendante hiérarchique
regio <- constr.hclust(d = dissim, method = "ward.D", links = circ_link_contig)

# A. Arbre de classification
plot(regio,
     main = "Arbre de classification",
     hang = -1,
     cex = 0.7)
# ---

# B. Hiérarchie des nœuds
barplot(rev(regio$height)[1:20],
        main = "Hiérarchie des nœuds",
        names.arg = 1:20,
        cex.names = 0.4)

La cartographie des découpages en 5 et 11 régions produit des résultats intéressants même si leur pouvoir explicatif est plus faible que celui de la classification.

# Découpage en 5 classes
mapdon_circ$reg5 <- as.factor(cutree(regio, 5))
cartogram_R$reg5 <- as.factor(cutree(regio, 5))

# Découpage en 11 classes
mapdon_circ$reg11 <- as.factor(cutree(regio, 11))
cartogram_R$reg11 <- as.factor(cutree(regio, 11))

# Découpage en 22 classes
mapdon_circ$reg22 <- as.factor(cutree(regio, 22))
cartogram_R$reg22 <- as.factor(cutree(regio, 22))

# 1.a CAH - 5 classes
mf_map(mapdon_circ, var="reg5",type="typo", leg_title = "Classes",lwd=0.4)
mf_layout("5 régions",credits = "", scale=T, frame=T, arrow=F)
# --- 

# 1.b CAH - 5 classes
mf_map(cartogram_R, var="reg5",type="typo", leg_title = "Classes", lwd=0.4)
mf_layout("5 régions",credits = "", scale=T, frame=T, arrow=F)
# --- 

# 2.a CAH - 11 classes
mf_map(mapdon_circ, var="reg11",type="typo", leg_title = "Classes", lwd=0.4)
mf_layout("11 régions",credits = "", scale=T, frame=T, arrow=F)
# --- 

# 2.b CAH - 11 classes
mf_map(cartogram_R, var="reg11",type="typo", leg_title = "Classes", lwd=0.4)
mf_layout("11 régions",credits = "", scale=T, frame=T, arrow=F)

Sans reprendre en détail l’analyse des profils de classe, on voit que la régionalisation en cinq classes est assez proche des résultats obtenus à l’échelle des départements. On retrouve en effet la singularité de l’Ile-de-France, de la Seine-Saint-Denis, de l’Ouest et de la partie nord du Bassin Parisien. Quant à la régionalisation en onze classes, elle met en valeur la singularité des grandes métropoles provinciales de Lille et Lyon (mais pas Marseille) ainsi que les spécificités du Sud-Ouest et des Alpes.

Le changement d’échelle ne modifie donc pas radicalement les conclusions obtenues au niveau départemental puisque les métropoles de taille moyenne (Rennes, Nantes, Bordeaux, Toulouse, Strasbourg, …) sont absorbées par les circonscriptions voisines. Seules les métropoles de taille suffisante pour se subdiviser en plusieurs circonscriptions législatives arrivent à émerger comme régions à cette échelle.

Ce n’est qu’en poussant la régonalisation à un nombre plus élevé de classes que l’on voit apparaître les métropoles de rang inférieur mais aussi des différences internes aux grandes régions liées à des identités régionales d’ordre historique ou culturel. Examinons à titre d’exemple un découpage en trente régions :

# Découpage en 30 classes
mapdon_circ$reg30 <- as.factor(cutree(regio, 30))
cartogram_R$reg30 <- as.factor(cutree(regio, 30))

# 2.b CAH - 30 classes
mf_map(cartogram_R, var="reg30",type="typo", leg_title = "Classes", lwd=0.4, pal=rainbow(30),leg_pos = NA)
mf_layout("30 régions",credits = "", scale=T, frame=T, arrow=F)

On voit apparître des régions correspondant à la réunion des circonscriptions électorales de Bordeaux, Toulouse, Marseille, Strasbourg, Nantes, Nancy, Metz, … Mais on repère également une mise en évidence de régions correspondant à l’Alsace et une Bretagne réunifiée incluant la Loire Atlantique. Ces singularités sont sans doute liée à la présence de listes régionalistes qui, bien que correspondant à un pett nombre de vote, suffisent à distinguer ces territoires des espaces environnant.

3.4 Discussion

Notre petit exemple pédagogique se limitant à l’échelle encore grossière des circonscriptions, il ne permet pas de prendre parti dans la polémique qui a opposé les spécialistes de géographie électorale autour de la question du gradient d’urbanité (Lévy, 2007) et des déterminants sociaux ou spatiaux du vote dans les espaces périurbains (Ripoll et Rivière, 2007). Le débat entre ces auteurs concernait en effet des analyses à des niveaux d’agrégation plus fins tels que les communes et les données infracommunales par quartiers iris ou bureaux de vote. Les analyses à cette échelle (agrégats de 2000 personnes ou 1000 électeurs environ) modifient drastiquement les configurations spatiales et les corrélations éventuelles entre les variables socio-économiques et les choix politiques (Russo et Beauguitte, 2014).

Pour autant nos analyses de régionalisation présentent l’intérêt théorique de mettre en évidence l’opposition entre des gradients (transition graduelles) et des discontinuités (ruptures brutales entre unités voisines) et de permettre d’identifier des blocs homogènes différents selon le niveau d’agrégation et les limites de la zone d’étude. Une analyse comparative de régionalisation portant sur des aires urbaines de plus de 100 000 habitants décrites par leur bureaux de votes à partir des travaux de Rivière (2022) permettrait sans doute d’identifier dans chacune des régions homogènes comportant des enclaves ou exclaves justifiant d’enquêtes ciblées de terrain. De la même manière la réalisation de régionalisations appliquées à des coupes allant des centre-ville vers le rural profond permettrait peut-être d’examiner si les transitions s’opèrent de façon continue - ce que suppose stricto sensu l’idée de gradient - ou si l’on voit apparaître des discontinuités en marche d’escalier séparant des territoires bien différenciés confortant les thèses de Lévy (2013). Dans les deux cas, la réplication des mêmes algorithmes de régionalisation à des dates successives fournirait une image intéressante des dynamiques de diffusion ou de retraction, plus simple à analyser que la comparaison de classifications.

Conclusion

Comme toutes les informations spatiales, les données électorales sont très sensibles au choix du niveau d’agrégation et au problème de l’unité spatiale modifiable (Modifiable Area Unit Problem ou MAUP). Mais la multiplicité des niveaux d’agrégation et des échelles observation ne doit-elle pas être considéré comme un progrès plutôt qu’un problème (Madelin et al., 2009) ?

La trace de régions historiques fantômes

Le fait que les régionalisations et classifications apportent des résultats assez voisins aux échelles d’observation régionale et départementale mais très différents au niveau des circonscriptions (ou des communes et des bureaux de votes) est en soi un résultat intéressant. Il suggère que si l’on mélange les comportements urbains, périurbains et ruraux (ce qu’autorise précisément le niveau départemental) on peut encore reconnaître le contour de vastes entités territoriales issues des temporalités longues de l’histoire économique sociale et culturelle : Grand Ouest catholique, Nord-Est ouvrier, Méditerranée protestataire, Sud-Ouest radical-socialiste, … Il ne s’agit pas ici de reproduire ddes explications simplistes fondées sur des corrélations écologiques douteuses avec des déterminants de type anthropologique (Le Bras et Todd, 2013) ou économique (Piketty et Cagé, 2023). Mais plutôt de chercher la trace de frontières fantômes et de suivre leur permanence, leur déplacement et leur éventuel effacement sans vouloir à tout prix les relier à une cause ultime (Von Hirschhausen et al., 2019). Ne pas considérer en somme que la maille d’observation la plus petite est nécessairement la plus intéressante comme le montre les errements des analyses communales de la “fracture sociale” ou de la “France périphérique” (Guilluy, 2024).

La trace d’anciennes régions administratives

L’échec relatif des méthodes de régionalisation à rendre compte des différenciations électorales au niveau des circonscriptions semble moins lié au niveau d’agrégation qu’à l’espace de référence retenu. Compte tenu de la force des oppositions entre espace urbains, périurbains et ruraux, il était prévisible que les méthodes de régionalisation échoueraient à fournir une descfription pertinente de la France entière sauf à utiliser un nombre très élevé de classes. La classification offre clairement ici une solution meilleure.

Mais le problème se poserait différemment si l’on avait gardé le niveau d’agrégation des circonscriptions mais limité l’espace d’étude à une seule région et tout particulièrement dans le cas des régions fusionnées issues de la réforme de 2015 (Hauts de France, Grand Est, Occitanie, Auvergne-Rhône-Alpes, …). L’exemple de l’Occitanie montre que la régionalisation du vote en trois ou sept classes fait clairement apparaître la singularité des deux anciennes capitales régionales (Toulouse et Montpellier) mais aussi de fortes différences de comportement électoral entre les circonscriptions des deux anciennes régions.

Info -- For this coefficient, sqrt(D) would be Euclidean
Info -- This coefficient does not have an upper bound (no fixed D.max)

Il n’est pas besoin ici de faire appel à un processus de diffusion pour expliquer des différences de comportements politiques qui peuvent s’expliquer par plus de trois décennies d’appartenance à des régions ayant connu des évolutions politiques différrentes.

Régionaliser l’espace et le temps

Selon Boulding (1985), le terme de région peut désigner aussi bien des découpages de l’espace que des découpages du temps. On pourrait aller plus loin en ajoutant qu’une régionalisation est un découpage simultané de l’espace et du temps. Une configuration socio-politique telle que la France de l’Ouest décrite tour à tour par Siegfried, Goguel, Frémont, Guermond ou Bussi (Bussi et al., 2019) s’inscrit dans une triple dimension sociale, spatiale et temporelle. Son effacement, sa résurgence, ses évolutions de contours et de contenu constituent une séquence dynamique marquée par des transformations brutales ou graduelles.

Plus que l’analyse des niveaux hiérarchiques de régionalisations ou de classification à une date donnée, c’est sans doute du côté des séquences de régionalisations et classifications successives à des dates successives que l’on peut attendre les résultats les plus intéressants. Et c’est sans doute à l’aide de telles séquences que l’on pourra le mieux trancher entre les deux hypothèses structuralistes et diffusionistes et décider s’il vaut mieux utiliser des méthodes de classification ou régionalisation.

  • Si l’on suppose que les causes du vote sont principalement d’ordre social et liées à des causes individuelles ou des jeux d’acteurs qui ne dépendent pas de la localisation géographique, alors la classification semble la solution la plus adaptée. Une fois identifiées les classes correspondant à tel ou tel type de comportement électoral, on pourra les mettre en rapport avec d’autres attributs des lieux tels que la richesse des habitants, les modes d’habitat, l’accessibilité aux services, etc. Et surtout on pourra choisir des terrains d’enquête pour mobiliser des méthodes d’entretien semi-directif ou de questionnaire.

  • Si l’on suppose au contraire que les comportements électoraux se propagent dans l’espace à la faveur de processus d’imitation ou d’identification ou sont influencées par des structures socio-spatiales relativement pérennes, alors il semble pertinent de regrouper des lieux proches en région qui sont susceptibles de voir leurs attitudes électorales converger au cours du temps. La permanence d’une même région à plusieurs dates sera alors le signe manifeste d’un effet de contexte agissant sur la longue durée. Tandis que son extension ou sa rétraction confortera l’hypothèse de l’existence de processus de difffusion.

Bibliographie

Anselin, L. (2022). Spatial econometrics. Handbook of spatial analysis in the social sciences, 101‑122.
Anselin, L., Syabri, I. et Kho, Y. (2009). GeoDa: an introduction to spatial data analysis. In Handbook of applied spatial analysis: Software tools, methods and applications (p. 73‑89). Springer.
Baron, M. et Karine, E. (1995). 1995 : les élections présidentielles et la fracture sociale où les jubilations des géographes quantitativistes. Feuilles de géographie, Iv, 1‑20. https://feuilles-de-geographie.parisnanterre.fr/wp-content/uploads/2016/06/1995_15.pdf
Benzecri, J. P. (1973). LAnalyse des données: la Taxinomie, vol. 1. Dunod, Paris, 31.
Boulding, K. E. (1985). Regions of time. Papers in Regional Science, 57(1), 19‑32.
Bourdieu, P., Chamboredon, J.-C. et Passeron, J.-C. (2005). Le métier de sociologue: préalables épistémologiques (vol. 1). Walter de Gruyter.
Bussi, M. (1998). Eléments de géographie électorale. Presses universitaires de Rouen et du Havre.
Bussi, M., Fourquet, J. et Colange, C. (2012). Analyse et compréhension du vote lors des élections présidentielles de 2012. Revue française de science politique, 62(5), 941‑963.
Bussi, M., Le Digol, C., Voilliot, C., et al. (2019). Le Tableau politique de la France de l’Ouest d’André Siegfried: 100 ans après. Héritages et postérités. Presses universitaires de Rennes.
Durkheim, É. (1897). Le suicide, étude sociologique. P.: Alcan.
Goguel, F. (1953,2012). Géographie des élections françaises de 1870 à 1951. Presses de Sciences Po.
Gombin, J. et Rivière, J. (2014). Vers des convergences interdisciplinaires dans le champ des études électorales? L’Espace Politique. Revue en ligne de géographie politique et de géopolitique, (23).
Grasland, C. (1997). L’analyse des discontinuités territoriales: l’exemple de la structure par âge des régions européennes vers 1980. L’espace géographique, 309326. https://www.jstor.org/stable/44381820
Grasland, C. (2010). Spatial analysis of social facts. Handbook of Quantitative and Theoretical Geography or Advances in Quantitative and Theoretical Geography, 000‑046.
Guénard, G. et Legendre, P. (2022). Hierarchical clustering with contiguity constraint in R. Journal of statistical software, 103, 126. https://www.jstatsoft.org/article/view/v103i07
Guilluy, C. (2024). La France périphérique. Comment on a sacrifié les classes populaires. Flammarion.
Hagerstrand, T. (1968). Innovation diffusion as a spatial process.
Husson, F., Josse, J. et Pagès, J. (2010). Analyse de données avec R-Complémentarité des méthodes d’analyse factorielle et de classification (p. nc). https://inria.hal.science/inria-00494779/
Husson, F., Lê, S. et Pagès, J. (2016). Analyse de données avec R.
Le Bras, H. (2002). Une autre France. Odile Jacob.
Le Bras, H. et Todd, E. (2013). Le mystère français. Seuil Paris.
Lê, S., Josse, J. et Husson, F. (2008). FactoMineR: an R package for multivariate analysis. Journal of statistical software, 25, 118. https://www.jstatsoft.org/article/view/v025i01
Legendre, P. et De Cáceres, M. (2013). Beta diversity as the variance of community data: dissimilarity coefficients and partitioning. Ecology Letters, 16(8), 951‑963. https://doi.org/10.1111/ele.12141
Legendre, P. et Fortin, M. J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107138. https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/article/10.1007/BF00048036&casa_token=HeSYprqF-4cAAAAA:x09D1Jj79TyMaBGTTT7jzTHkkY372rT2gMRokzrHsDdsg9eZTKTUyw0clv7WQVmAdYlFTKLYMo3FQeACPQ
Lévy, J. (2007). Regarder, voir. Un discours informé par la cartographie (vol. 102, p. 131‑140).
Lévy, J. (2013). Liens faibles, choix forts: les urbains et l’urbanité.
Madelin, M., Grasland, C., Mathian, H., Sanders, L. et Vincent, J.-M. (2009). Das „MAUP “: Modifiable Areal Unit-Problem oder Fortschritt? Informationen zur Raumentwicklung, 10-11, 645‑660.
Murtagh, F. et Legendre, P. (2014). Wards Hierarchical Agglomerative Clustering Method: Which Algorithms Implement Wards Criterion? Journal of Classification, 31(3), 274‑295. https://doi.org/10.1007/s00357-014-9161-z
Piketty, T. et Cagé, J. (2023). Une histoire du conflit politique: élections et inégalités sociales en France, 1789-2022. Seuil.
Randriamihamison, N., Vialaneix, N. et Neuvial, P. (2021). Applicability and interpretability of Ward’s hierarchical agglomerative clustering with or without contiguity constraints. Journal of Classification, 38(2), 363‑389.
Ripoll, F. et Rivière, J. (2007). La ville dense comme seul espace légitime? Analyse critique d’un discours dominant sur le vote et l’urbain (vol. 102, p. 120‑130).
Rivière, J. (2009). Le pavillon et l’isoloir. Géographie sociale et électorale des espaces périurbains français (1968-2008). À travers les cas de trois aires urbaines moyennes (Caen, Metz et Perpignan). [thèse de doctorat]. Université de Caen.
Rivière, J. (2022). L’illusion du vote bobo. Configuration électorales et structures sociales dans les grandes villes françaises. Rennes (Presses universitaires de).
Russo, L. et Beauguitte, L. (2014). Aggregation level matters: evidence from French electoral data. Quality & Quantity, 48(2), 923‑938.
Sanders, L. (1989). Lanalyse statistique des données en géographie. GIP Reclus. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=6516569
Siegfried, A. (1913). Tableau politique de la France de l’ouest sous la troisième république: 102 cartes et croquis, 1 carte hors texte. A. Colin.
Von Hirschhausen, B., Grandits, H., Kraft, C., Müller, D. et Serrier, T. (2019). Phantom borders in Eastern Europe: A new concept for regional research. Slavic Review, 78(2), 368‑389.
Ward, J. H. (1963). Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58(301), 236‑244. https://doi.org/10.1080/01621459.1963.10500845

Annexes

Préparation des données

A. Données tabulaires

  • le fichier résultats-définitifs-par-circonscriptions.csv est accesible sur le site data.gouv.fr en suivant ce lien. Il présente les résultats définitifs des élections europénnes et a pour origine le Ministère de l’Intérieur. Comme il est très complexe (beaucoup de colonnes redondantes) nous l’avons modifié pour créer des fichiers ne contenant que les colonnes indispensables (effectifs)

  • le fichier candidats-eur-2024.xlsx est accessible sur le site data.gouv.fr en suivant ce lien. Produit par le ministère de l’intérieur il fournit une information detaillée sur les candidats de chacune des listes. Nous allons en extraire uniquement les caractéristiques des têtes de liste afin de produire un tableau de métadonnées sur les 38 têtes de listes.

  • le fichier indic-stat-circonscriptions-legislatives-2022.xls a été produit par l’INSEE et est accessible en suivant ce lien. Il fournit un ensemble de données de cadrage sociales et économiques sur les circonscriptions législatives de France à partir des données du recensement de 2022 et de quelques autres sources. Il ne sera pas utilisé directement mais peut servir pour des exercices complémentaires.

  • le fichier circo_composition.xls également accessible sur le même lien permet de mettre en rapport les circonscription avec les départements, les régions ou les communes. Sachant qu’une même commune peut participer à deux circonscriptions ou plus. On s’en servira principalement pour établir le lien entre circonscriptions et régions.

  • le fichier france_circonsscriptions_legislatives_2012.json contient un fonds de carte simplifié des circonscriptions législatives en vigueur depuis 2012. C’est une reprise du travail de Toxicode. L’Atelier de cartographie de Sciences Po à ensuite vérifié, nettoyé et généralisé le fond. Il est accessible sur le site data.gouv.fr en suivant ce lien. Il est beaucoup plus léger et mieux généralisé que le fonds de carte fournit par l’INSEE avec les deux ressources précédentes

B. Données géographiques

On charge le fichier des circonscriptions en ne conservant que les données de France métropolitaine hors Corse, soit 533 circonscriptions. On le projette en EPSG 2154 puis on l’agrège par département et régions pour disposer de trois fonds de cartes.

# Charge le fonds de carte
map <- st_read("data/raw/france-circonscriptions-legislatives-2012.json")


# Charge la table de correspondance entre circonscriptions, départements et régions
meta <- readxl::read_xlsx("data/raw/circo_composition.xlsx", sheet= "table") 

# Harmonise les noms et codes de départements et régions
meta <- meta |>
          select(circ=circo, 
                 dept= DEP,
                 dept_nom=libdep, 
                 regi=REG, 
                 regi_nom = libreg) |>
          filter(substr(circ, 1, 2) == dept) |>   # CORRIGE DES ERREURS DE CODAGE DE L'INSEE
          unique()


# Crée la carte des circonscriptions
map_circ <- map |> 
              mutate(circ = ID) |>
              select(circ) |>
              left_join (meta) |>     
              filter(nchar(dept)<3,                      # Élimine les DROM
                     !dept %in% c("2A", "2B")) |>       # Élimine la Corse
              arrange(regi, dept,circ) |>
              st_transform(2154)                         # Change la projection

saveRDS(map_circ, "data/net/map_circ.RDS")

# Agrégation par département 
map_dept <- map_circ |> 
                group_by(dept) |>
                summarize(dept_nom = min(dept_nom),
                          regi = min(regi),
                          regi_nom = min(regi_nom), 
                          .groups = "drop") 

saveRDS(map_dept, "data/net/map_dept.RDS")

# Agrégation par région
map_regi <- map_dept |> 
                group_by(regi) |>
                summarise(regi_nom = min(regi_nom), 
                          .groups = "drop") 

saveRDS(map_regi, "data/net/map_regi.RDS")

On affiche les trois fonds de carte pour vérification:

# Chargement
map_circ <- readRDS("data/net/map_circ.RDS")
map_dept <- readRDS("data/net/map_dept.RDS")
map_regi <- readRDS("data/net/map_regi.RDS")

# Vérification des fonds de carte
mf_map(map_circ, type = "base", col="lightyellow", border="gray80", lwd=0.4)
mf_map(map_dept, type = "base", col=NA, border="gray50", lwd=0.8, add=T)
mf_map(map_regi, type = "base", col=NA, border="gray20", lwd=1.6, add=T)
mf_layout(title = "Superposition des trois fonds de carte",
          credits = "Source : Toxicode & Atelier de Cartographie de Science Po\nAuteur : Claude Grasland, 2024", frame = T)

C. Données électorales

Nous allons extraire du fichier électoral les variables générales de cadrage (inscrits, votants, blancs,nuls, …) et les effectifs bruts de vote pour les candidats des différentes listes par circonscription. Ces deux tableaux seront ensuite agrégés par départements et régions

x <- read.csv2("data/raw/resultats-definitifs-par-circonscription.csv")

# Modification du code des circonscriptions pour adéquation avec les fonds de carte
z <- x$Code.circonscription.législative
x$circ <- paste0(substr(z, 1, 2), "0", substr(z, 3, 4))


# Variables générales
gen <- x  |> 
       select(circ ,
              ins = Inscrits,
              vot = Votants,
              abs = Abstentions,
              bla = Blancs,
              nul = Nuls,
              exp = Exprimés)


# Ajout des clés d'agrégation géographiques
map_circ <- readRDS("data/net/map_circ.RDS")
geo <- st_drop_geometry(map_circ)
gen <- left_join(geo, gen)


# Ajout des suffrages par liste
vot <- x[, substr(names(x), 1, 5) == "Voix."]
a <- rep("vot", 38)
b <- 1:38
z <- paste0(a, b)
names(vot) <- z
vot$circ <- x$circ
vot <- vot[, c(39, 1:38)]

# Tableau final des circonscriptions
don_circ <- left_join(gen, vot)
saveRDS(don_circ, "data/net/don_circ.RDS")
kable(head(don_circ), caption = "Résultats électoraux par circonscription")

# Agrégation par départements
don_dept <- don_circ |> group_by(dept, dept_nom, regi, regi_nom) |> summarise_at(2:45, sum) |> ungroup()

saveRDS(don_dept, "data/net/don_dept.RDS")
kable(head(don_dept), caption = "Résultats électoraux par département")

# Agrégation par régions
don_regi <- don_circ |> group_by(regi, regi_nom) |> summarise_at(4:47, sum) |> ungroup() 
saveRDS(don_regi, "data/net/don_regi.RDS")
kable(head(don_regi), caption = "Résultats électoraux par région")

# Métadonnées sur les têtes de listes
m <- readxl::read_xlsx("data/raw/candidats-eur-2024.xlsx")
m <- m |> filter(Ordre == 1) |>
  select(
    code = `Numéro de panneau`,
    nom = `Libellé de la liste`,
    tete_nom = `Nom sur le bulletin de vote`,
    tete_prenom = `Prénom sur le bulletin de vote`,
    tete_sexe = Sexe,
    tete_nais = `Date de naissance`
  )

# Ajout de la nuance politique selon le ministère de l'intérieur
typol <- as.character(x[1, substr(names(x), 1, 6) == "Nuance"])
m$typol <- typol
saveRDS(m, "data/net/don_listes.RDS")
kable(m, caption = "Description des listes")

Contrôle des données

A. Agrégation

On vérifie tout d’abord que la procédure d’agrégation a bien donné bien les mêmes totaux au niveau des circonscriptions, départements et régions. Il apparaît que pour chaque niveau le nombre total d’inscrits est bien le même et il ne semble pas utile de vérifier les autres colonnes.

# Chargement des données statistiques
don_circ <- readRDS("data/net/don_circ.RDS")
don_dept <- readRDS("data/net/don_dept.RDS")
don_regi <- readRDS("data/net/don_regi.RDS")

Vérification des sommes

sum(don_circ$ins)
[1] 45704587
sum(don_dept$ins)
[1] 45704587
sum(don_regi$ins)
[1] 45704587

B. Jointure

On affiche trois cartes du vote pour la liste n°5 (Bardella) afin de vérifier si les jointures s’opèrent correctement entre données géométriques et statistiques.

# Chargement des données géométriques
map_circ <- readRDS("data/net/map_circ.RDS")
map_dept <- readRDS("data/net/map_dept.RDS")
map_regi <- readRDS("data/net/map_regi.RDS")

# Choix de la palette et des classes
mypal <- hcl.colors(n = 9, palette = "Blues")
mybreaks = c(0, 15, 20, 25, 30, 35, 40, 45, 50, 100)

# Carte par région
mapdon <- left_join(map_regi, don_regi) |>
  mutate(vot = vot5, pct = 100 * vot5 / exp) |>
  select(vot, pct)

C. Cartographie

mf_map(
  mapdon,
  type = "choro",
  var = "pct",
  breaks = mybreaks,
  pal = mypal,
  leg_val_rnd = 0,
  leg_pos = "left",
  leg_title = "% suffrages exprimés"
)

mf_map(
  mapdon,
  type = "prop",
  var = "vot",
  inches = 0.1,
  leg_pos = "topleft",
  leg_title = "Nb. de voix"
)

mf_layout(
  title = "Vote Bardella aux élections européennes de 2024 par régions",
  credits = "Source : INSEE, IGN, Ministère de l'Intérieur",
  frame = T,
  arrow = F
)

# Carte par département
mapdon <- left_join(map_dept, don_dept) |>
              mutate(vot = vot5, pct = 100 * vot5 / exp) |>
              select(vot, pct)

mf_map(
  mapdon,
  type = "choro",
  var = "pct",
  breaks = mybreaks,
  pal = mypal,
  leg_val_rnd = 0,
  leg_pos = "left",
  leg_title = "% suffrages exprimés"
)

mf_map(
  mapdon,
  type = "prop",
  var = "vot",
  inches = 0.1,
  leg_pos = "topleft",
  leg_title = "Nb. de voix"
)

mf_layout(
  title = "Vote Bardella aux élections européennes de 2024 par régions",
  credits = "Source : INSEE, IGN, Ministère de l'Intérieur",
  frame = T,
  arrow = F
)

# Carte par circonscription (zoom sur l'Occitanie)
mapdon <- left_join(map_circ, don_circ) |>
                filter(regi_nom == "Occitanie") |>
                mutate(vot = vot5, pct = 100 * vot5 / exp) |>
                select(vot, pct)

mf_map(
  mapdon,
  type = "choro",
  var = "pct",
  breaks = mybreaks,
  pal = mypal,
  leg_val_rnd = 0,
  leg_pos = "left",
  leg_title = "% suffrages exprimés"
)

mf_map(
  mapdon,
  type = "prop",
  var = "vot",
  inches = 0.1,
  leg_pos = "topleft",
  leg_title = "Nb. de voix"
)

mf_layout(
  title = "Vote Bardella aux élections européennes de 2024 par circonscription en région Occitanie",
  credits = "Source : INSEE, IGN, Ministère de l'Intérieur",
  frame = T,
  arrow = F
)

Annexes

Informations de session
setting value
version R version 4.4.1 (2024-06-14)
os macOS 15.1
system x86_64, darwin20
ui X11
language (EN)
collate en_US.UTF-8
ctype en_US.UTF-8
tz Europe/Paris
date 2025-08-20
pandoc 3.2 @ /Applications/RStudio.app/Contents/Resources/app/quarto/bin/tools/x86_64/ (via rmarkdown)
quarto 1.7.33 @ /usr/local/bin/quarto
package ondiskversion source
adespatial 0.3.24 CRAN (R 4.4.1)
cartogramR 1.2.0 CRAN (R 4.4.1)
dplyr 1.1.4 CRAN (R 4.4.0)
DT 0.33 CRAN (R 4.4.0)
ggplot2 3.5.1 CRAN (R 4.4.0)
ggrepel 0.9.6 CRAN (R 4.4.1)
gt 0.11.1 CRAN (R 4.4.1)
ineq 0.2.13 CRAN (R 4.4.0)
knitr 1.50 CRAN (R 4.4.1)
mapsf 0.12.0 CRAN (R 4.4.1)
sf 1.0.21 CRAN (R 4.4.1)
spData 2.3.3 CRAN (R 4.4.1)
spdep 1.3.6 CRAN (R 4.4.1)
stargazer 5.2.3 CRAN (R 4.4.0)

Réutilisation

Citation

BibTeX
@article{grasland2025,
  author = {Grasland, Claude},
  title = {Classification et régionalisation},
  journal = {Rzine},
  date = {2025-08-20},
  doi = {10.xxxx/xxx-xxx},
  issn = {2743-8791},
  langid = {fr-FR},
  abstract = {La combinaison des méthodes de classification et de
    régionalisation est facilitée par le développement d’une nouvelle
    fonction du package `adespatial` qui permet de regrouper les unités
    spatiales les plus ressemblantes en respectant la contrainte de
    connexité. Mise au point par des écologues canadien, cette méthode
    de classification ascendante hiérarchique avec contrainte de
    voisinage est beaucoup plus simple d’emploi et beaucoup plus
    efficace que les autres méthodes de régionalisation disponible
    actuellement dans des packages tels que Rgeoda. Elle s’appuie sur un
    corpus théorique d’analyse spatiale de la biodiversité des espaces
    animales ou végétales que l’on peut tenter de transposer à de
    nombreux problèmes géographiques. Mais en adoptant une posture
    critique dans le cas de thématiques éloignées des questions de
    biologie végétale. Nous prenons ici comme exemple l’analyse du
    résultat des élections européennes de 2024 en France métropolitaine
    à trois niveaux d’agrégation : régions adminisratives , départements
    et circonscriptions législatives. Nous comparons à chaque échelle
    les résultats des méthodes de régionalisation et classification et
    nous discutons leurs apports respectifs pour la compréhension des
    phénomènes de géographie électorale.}
}
Veuillez citer ce travail comme suit :
Grasland, C. (2025). Classification et régionalisation. Rzine. https://doi.org/10.xxxx/xxx-xxx